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Unit-I 

Signed Measure  

 

Signed Measure 

We define a measure as a non-negative set function, we will now allow 

measure to take both positive and negative values. 

Suppose that 1 and 2 are two measures, on the same measurable space (X, 

B).  If we define a new measure 3 on (X, B) by setting  

3(E) = C1 1(E) + C2 2(E) C1, C2  0.  

Then it is clear that 3 is a measure, thus two measures can be added.  This can 

be extended to any finite sum. 

Another way of constructing new measures is to multiply a given measure by 

an arbitrary non-negative constant.   Combining these two methods, we see that 

if  

  { 1, 2,…, n}. 

is a finite set of measures and { 1, 2,…, n} is a finite set of non negative real 

numbers.  Then the set fn  defined for every set E in X by  

   E = 
n

1i
i i E 

is a measure. 

Now what happens if we try to define a measure by  

  vE = 1E  2E 

The first thing may occur is that v is not always non-negative and this leads to 

the consideration of signed measure which we shall define now.  Also we get 

more difficulty from the fact that v is not defined when 1E = 2E = .  For 

this reason, we should have either 1E or 2E finite with these consideration in 

mind, we make the following definition 

Definition :- Let (X, B) be a measurable space.  An extended real valued 

function, v : B R defined on the algebra B is called a signed measure if it 

satisfies the following conditions. 
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(1) v assumes at most one of the values +  and  

(2) v( ) = 0 

(3) For any sequence {Ei} of disjoint measurable sets. 

v
1i

i
1i

i EvE  

the equality here means that the series on the R.H.S. converges absolutely if 

v 
1i

iE is finite and that it properly diverges otherwise i.e. definitely diverges 

to +  or . 

Thus a measure is a special case of signed measure but a signed measure is not 

in general a measure. 

Definition :- Let (X, B) be a measurable space and let A be a subspace of X.  

We say that A is a positive set w.r. to signed measure v if A is measurable and 

for every measurable subset E of A we have vE  0.  Every measurable subset 

of positive set is again positive and if we take the restriction of v to a positive 

set, we obtain a measure.  Similarly a set B is called negative if it is measurable 

and every measurable subset E of it has a non-positive v measure i.e. vE  0. 

A set which is both positive and negative with respect to v is called a null set.  

Thus a measurable set is a null set iff every measurable subset of it has v 

measure zero. 

Remark :- Every null set have measure zero but a set of measure zero may be 

a union of two sets whose measures are not zero but are negatives of each 

other.  Similarly a positive set is not to be confused with a set which merely 

has positive measure.  

Lemma 1 :- The union of a countable collection of positive sets is positive. 

Proof :- Let A = An be the union of a sequence <An> of positive sets.  Let E 

be a measurable subset of A.  Since An are measurable, A is measurable and 

An
c
 are measurable. Set 

  En = E  
C
nA   

C
1nA … 

C
1A  

Then En is a measurable subset of An and vEn  0.  Since the sets En s are 

disjoint and. E =  En. 

Therefore we have  
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  v(E) = 
1n

n )E(v  0. 

Thus we have proved that A =  An is a measurable set and for every 

measurable subset E of A we have v(E)  0.  Hence A is a positive set. 

Lemma 2 :- If E and F are measurable sets and v is a signed measure such that 

E F and |vF| <  

Then   |v E| < . 

Proof :- We have vF = v(F E) + v(E) 

If exactly one of the term is infinite then so is v(F).  If they are both infinite, 

[since v assumes at most one of the values +  and .)  They are equal and 

again infinite.  

Thus only one possibility remains that both terms are finite and this proves that 

every measurable subset of a set of finite signed measure has finite signed 

measure. 

Theorem 1 :- Let E be a measurable set such that 0 < vE < .  Then there is a 

positive set A contained in E with vA > 0. 

Proof :- If E is a positive set then we take A = E and thus vA = vE > 0 which 

proves the theorem.  

 We consider the case when E is not positive, then it contains sets of 

negative measure.  Let n1 be the smallest positive integer such that there is a 

measurable set E1  E with vE1 < 
1n

1
 

Now  E = (E E1)  E1 

and   E E1 and E1 are disjoint 

Therefore  vE = v(E E1) + v(E1) 

  v(E E1) = vE  vE1     …(1) 

Since vE is finite (given).  It follows that v(E E1) and vE1 are finite. 

Moreover vE > 0 and vE1 is negative, it follows from (1) that v(E E1) > 0.   

Thus  0 < v (E E1) < . 

If E E1 is positive, we can take  
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  A = E E1.  Hence the result  

Suppose that E E1 is not positive.  Then it contains set of negative measure.  

Let n2 be the smallest positive integer such that there is a measurable set E2  

E E1 with  

  vE2 < 
2n

1
 

Now  E = 
2

1i
iEE  (E1  E2) 

and  E 
2

1i
iE  and (E1  E2) are disjoint.  

Therefore vE = v 
2

1i
iEE  + v[E1  E2] 

  v 
2

1i
iEE = v(E)  v[E1  E2] 

     = v(E)  [vE1 + vE2] 

     = vE  vE1  vE2 

Since vE1 and vE2 are negative, it follows that  

  v 
2

1i
iEE   0. 

If E 
2

1i
iE is positive, we can take  A = E 

2

1i
iE  and the Theorem is 

established.  If it is not so, then it contains sets of negative measures, let n3 be 

the smallest integer such that there is a measurable set E3  
2

1i
iEE with 

vE3 <
3n

1
 .  Proceeding by induction, let nk be the smallest integer for 

which there is a measurable set Ek  E 
1k

1i
iE and 

  vEk < 
kn

1
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If we set A = E 
1k

kE       

 …(3) 

Then as before  

  E = A 
1k

kE  

Since this is a disjoint union, we have  

  VE = vA + v 
1k

kE  

        = vA +  vEk 

        < vA 
k1k n

1
. 

Since vE is finite, the series on the R.H.S. converges absolutely.  Thus 
kn

1
 

converges and we have nk .  Since vEk  0 and vE > 0, we must have vA > 

0. 

It remains to show that A is positive set.  Let >0 be given.  It is clear from (3) 

that A is the difference of two measurable sets and therefore A is measurable.  

Let >0 be given.  Since 
kn

1
 converges, this implies that nk , we may 

choose k so large that 

  (nk 1)
1
 <  

Since  A  E 
k

1j
jE  

A can contain no measurable sets with measure less than 
1n

1

k

 which is 

greater than .  Thus A contains no measurable sets of measure less than .  

Since  is an arbitrary positive number, it follows that A can contain no sets of 

negative measure and so must be a positive set. 

Definition :- Hahn Decomposition  
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A decomposition of X into two disjoint sets A and B such that A is positive 

with respect the signed measure v and B is negative with respect the signed 

measure v is called a Hahn Decomposition for the signed measure v.  

Hahn Decomposition Theorem 

Statement :- Let v be a signed measure on the measurable space (X, B).  Then 

there is a positive set A and a negative set B such that  

  X = A  B and A  B =  . 

Proof :- Let v be a signed measure defined on the measurable space (X, B).  

By definition v assumes at most one of the values +  and .  Therefore 

w.l.o.g. we may assume that +  is the infinite value omitted by v.  Let  be the 

sup of vA over all sets A which are positive with respect to v.  Since the empty 

set is positive,   0.  Let {Ai} be a sequence of positive sets such that  

   = 
i
lim  vAi 

and set  A = 
1i

iA  

Since countable union of positive sets is positive.   

Therefore    vA.       

   (1) 

But A  Ai  A and so v(A Ai)  0. 

Since A = (A Ai)  Ai 

  vA = v(A Ai) + v(Ai) 

         v(Ai) 

Hence   vA          (2) 

Thus we have from (1) and (2) 

  vA = . 

which implies that vA =  and  < . 

Let B = A
C
 and let E be a positive subset of B.  Then E and A are disjoint and 

E A is a positive set.  Hence 

    v (E  A) = vE + vA 
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             = vE + . 

  vE = 0 [where 0   < ] 

Thus B contains no positive subset of positive measure and hence no subset of 

positive measure by the previous Lemma.  Consequently B is a negative set 

and  

  A  B = . 

Remark :- The above theorem states the existence of a Hahn decomposition 

for each signed measure.  Unfortunately, a Hahn-decomposition need not be 

unique.  Infact, it is unique except for null sets.  For if X = A1  B1 and X = A2 

 B2 are two Hahn decompositions of X, then we can show that for a 

measurable set E, 

  v(E  A1) = v(E  A2) 

and  v(E  B1) = v(E  B2) 

To see this, we observe that 

  E  (A1 A2)  (E  A1) 

so that  v[E  (A1  A2)]  0 

Moreover  E  (A1  A2)  E  B2 

  v[E  (A1  A2)]  0 

Hence  v[E (A1  A2)] = 0 

and by symmetry 

  v[E (A2 A1)] = 0 

Thus  v(E  A1) = v[E  (A1  A2)] = v[E  A2] 

Mutually Singular Measures  

Definition :-  v
+
(E) = v(E  A) 

and  v (E) = v(E  B) 

are called respectively positive and negative variations of v.  The measure |v| 

defined by  

  |v|(E) = v
+
 E + v E 
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is called the absolute value or total variation of v. 

Definition :- Two measures v1 and v2 on a measurable space (X, B) are said to 

be mutually singular if there are disjoint measurable sets A and B with X = A 

 B such that  

  v1(A) = v2(B) = 0 

Thus the measures v
+
 and v  defined above are mutually singular since 

  v
+
(B) = v(B  A) = v ( ) = 0 

and  v (A) = v(A  B) = v( ) = 0 

Jordan Decomposition  

Definition :- Let v be a signed measure defined on a measurable space (X, B).  

Let        v
+
 and v  be two mutually singular measures on (X, B) such that v = v

+
 

 v .  Then this decomposition of v is called the Jordan Decomposition of v. 

 Since v assumes at most one of values +  and , either v
+
 and v  

must be finite.  If they are bot finite, we call v, a finite signed measure.  A set E 

is positive for v if v  E = 0.  It is a null set if |v|(E) = 0. 

Definition :- A measure v is said to be absolutely continuous with respect to 

measure  if vA = 0 for each set A for which A = 0.  We use the symbol v < 

<  when v is absolutely continuous with respect to . 

In the case of signed measures  are v, we say that v   if |v| < < | | and v   

if  

  |v|  | | 

Definition :- Let  be a measure and f, a non-negative measurable function on 

X.  For E in B, set 

  vE = 
E

f d  

Then v is a set function defined on B.  Also v is countably additive and hence a 

measure and the measure v will be finite if and only if f is integrable since the 

integral over a set of -measure zero is zero.  

Jordan Decomposition Theorem 

Proposition :- Let v be a signed measure on a measurable space (X, B).  Then 

there are two mutually singular measures v
+
 and v  on (X, B) such that v = v

+
  

v .  Moreover, there is only one such pair of mutually singular measure. 



SIGNED MEASURE 13 

Proof :- Since by definition  

  v
+
(E) = v(E  A) 

  v (E) = v(E  B) 

  v(E) = v(E  A) + v(E  B) 

          = v
+
  v  

Also v
+
 and v  are mutually singular since  

  v
+
B = v(A  B) = v( ) = 0 

  v  A = v(B  A) = v( ) = 0. 

where X = A  B.     

Since each such pair determines a Hahn decomposition and also we have. 

Hahn-decomposition is unique except for null sets.  Thus there is only one such 

pair of mutually singular measures.  Also v takes at most one of the values +  

and  implies that at least one of the set functions v
+
 and v  is always finite.  

Radon Nikodym Theorem  

Let (X, B, ) be a -finite measure space and let v be a measure defined on B 

which is absolutely continuous w.r.t . Then there is a non-negative 

measurable function f such that for each set E in B, we have  

  vE = 
E

f d , E B. 

The function f is unique in the sense that if g is any measurable function with 

this property, then g = f a.e. in X w.r.t . 

Proof :- We first assume that  is finite.  Then v  is a signed measure for 

each rational .  Let (A , B ) be a Hahn-Decomposition for v   and take A0 

= X and B0 = . 

Now since X = A   B , C
βB = A  

  B   B   B  and is negative  

  B   B    A  and is positive.  

Now  B   B  = B   C
βB = B   A  
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Thus  (v  ) (B   B )  0 

  (v ) (B   B )  0 

If  >    (B   B ) = 0, therefore there is a measurable function f such that 

for each rational number , we have f   a.e. on A  and f   a. e on B .  

Since B0 = , we may take f to be non-negative.  Let E be an arbitrary set in B 

and set 

  Ek = E 
N

B
~

N

B k1k  

  E  = E ~  
N

Bk  

Then   E = E   [  Ek] 

And this is a disjoint union.  Hence  

  vE = vE  + v[  Ek] 

       = v E  + 
0k

vEk 

Since  Ek = 
N

B

N

B k1k    E 

Thus  Ek = E  

C

k1k

N

B

N

B
 

       = E  
N

A

N

B k1k  since Bk
C
 = Ak 

Hence Ek  
N

B 1k  
N

Ak , we have 

  
N

1k
f

N

k
 on Ek from the above existence of f. 

and so 

  
kE

k
N

1k
dfE

N

k
 Ek    (1) 
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N

1k
vEEμ

N

k
kk  Ek   

Thus we have 

  
N

k
 Ek  v Ek       (2) 

and   vEk  
N

1k
 Ek      (3) 

Now from (2), we have 

  vEk  
N

k
 Ek 

  vEk + 
N

1
  Ek  

N

k
 Ek +

N

1
 Ek 

    = 
kE

k fEμ
N

1k
d   [from (1)] 

Hence 

  vEk +
N

1
 Ek  

kE

f d . 

or  
kE

f  d   v Ek +
N

1
  Ek     (4) 

Similarly from (3), we have 

  vEk  
N

1k
 Ek 

  vEk 
N

1
 Ek  

N

1k
  Ek 

N

1
 Ek 

or  vEk 
N

1
  Ek  

N

k
 Ek  

kE

f  d   [from (1)] 

Thus  vEk 
N

1
  Ek  

kE

f  d      (5) 

Combining (4) and (5) we have 
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  vEk 
N

1
  Ek  

kE

f  d   vEk +
N

1
  Ek.   (6) 

On E , we have f =  a.e.  

If  E  > 0, we must have v E  = . 

Since (  ) E  is positive for each . 

If  E  = 0, we must have vE  = 0 since v < < .  In either case, we can write 

  vE  = 
E

f d        (7) 

Thus from (6) and (7), we have 

  vE  
N

1
vEμdfEμ

N

1

E

 E 

Since  E is finite and N arbitrary, we must have  

  vE = 
E

f d . 

To show that the theorem is proved for -finite measure , decompose X into 

countable union of Xi s of finite measure.  Applying the same argument for 

each Xi, we get the required function f. 

To show the second part, let g be any measurable function satisfying  

  vE = 
E

g du, E B  

For each n N 

define  An = B
n

1
)x(g)x(f,Xx  

and  Bn =
n

1
)x(f)x(g,Xx B 

Since   f(x) g(x)  
n

1
   x An 

  
n

1
μd)gf(

nA

 An 
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By linearity, we have  

  
nA nA n

1
μdgμdf  An 

  v An v An 
n

1
 An 

 0  
n

1
 An 

  An  0 

Since  An can not be negative, we have  

   An = 0. 

Similarly we can show that 

   Bn = 0 

If we take  

  C = {x X, f(x) g(x)} =  {An  Bn} 

But  An = 0 =  Bn 

 C =  An +  Bn = 0 

 C = 0 

Hence f = g a.e  w.r.t. measure .  

Remark :- The function  f given by above theorem is called Radon-Nikodym 

derivative of v with respect to .  It is denoted by 
du

dv
 

Lebesgue Decomposition Theorem    

Let (X, B, ) be a -finite measure space and v a -finite measure defined on 

B.  Then we can find a measure v0 which is singular w.r.to  and a measure v1 

which is absolutely continuous with respect to  such that v = v0 + v1 where 

the measures v0 and v1 are unique. 

Proof :- Since  and v are -finite measures, so is the measure  =  +v.  

Since both  and v are absolutely continuous with respect to .  Then Radon-
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Nikodym theorem asserts the existence of non-negative measurable functions f 

and g such that for each x E B 

   E = 
E

f d ,    v E =
E

g d . 

Let A = {x ; f(x) >0} and B = {x ; f(x) = 0}.  Then X is the disjoint union of A 

and B while  B = 0.  If we define v0 by  

  v0E = v(E  B) 

Then   v0 A = v(A  B) = v( ) = 0 

Since A and B are disjoint. 

and so   v0  . 

Let   v1(E) = v(E  A) = 
AE

g d  

  v0 E + v1E = v(E B) + v(E A) 

         = v[(E B)  (E A)] 

         = v[E (A B)] 

         = v[E  X] 

         = v(E) 

Thus  v = v0 + v1 

It remains to show that v1 < < .  Let E be a set of -measure zero. Then  

  0 =  E = 
E

f d . 

and therefore f = 0 a.e. w.r.t.  on E. 

Since f > 0 on A  E, we must have  

  (A  E) = 0. Hence v(A  E) = 0 

and so  v1 E = v(A E) = 0 

 v1 < <  

Thus v1 is absolutely continuous w.r.t.  
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Now to prove the uniqueness of v0 and v1, let v0  and v1  be measures such that 

v = v0  + v1  which has the same properties as that of measures v0 and v1. Then 

  v = v0 + v1 and v = v0  + v1  are two Lebesgue decomposition of 

v. 

Thus  v0  v0  = v1   v1. 

Taking the union of the support sets of v0 and v0 , we have a set E0 such that  

  (v0  v0 ) (E) = (v0 v0 ) (E  E0) and (E0) = 0 

But v1   v1 is absolutely continuous w.r.t.  and therefore zero on E0 since  

E0 = 0.  Thus for any measurable set E, we have 

  (v1   v1)E = (v0  v0 )E 

         = (v0  v0 ) (E  E0) 

         = (v1   v1) (E  E0) 

         = 0 

since v1   v1 is zero on E0 

Thus  v0 E = v0 E 

and  v1  E = v1E 

for all measurable sets  E which proves the uniqueness of v0 and v1. 

Remark :- The identity v = v0 + v1 provided by the preceding theorem (where 

v0 is singular w.r.t.  and v1 is absolutely continuous with respect to ) is 

called the Lebesgue Decomposition of v with respect to .      

Lebesgue-Stieltjes Integral  

Let X be the set of real numbers and B the class of Borel sets.  A measure  

defined on B and finite for bounded sets is called a Baire measure (on the real 

line) to each finite Baire measure, we associate a function F by setting. 

  F(x) = ( , x] 

The function F is called the cumulative distribution function of  and is real 

valued and monotone increasing we have 

  (a, b] = F(b)  F(a) 
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Since (a, b] is the intersection of the sets  

  
n

1
b,a    

   (a, b]  
n
lim

n

1
b,a  

and so  

  F(b)  F(a) =
n
lim )a(F

n

1
bF  

  F(b) = 
n
lim F

n

1
b  = F(b +) 

Thus a cumulative distribution function continuous on the right. Similarly 

  (b) = 
n
lim b,

n

1
b  

          = 
n
lim

n

1
bF)b(F  

          = F(b)  F(b ) 

Hence F is continuous at b iff the set {b} consisting of b alone has measure 

zero.  

Since   =  ( , n] 

    = 
n
lim ( , n] 

  0 = 
n
lim  [F( n)] 

  
n
lim F(n) = 0 

 
x
lim F(x) = 0. 

Since F is monotonic. 
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Thus we have proved that if  is finite Baire measure on the real line, then its 

Commulative Distribution function F is a monotone increasing bounded 

function which is continuous on the right. 

         and 
x
lim F(x) = 0 

Definition :- If  is a non-negative Borel measurable function and F is a 

monotone increasing function which is continuous on the right.  We define 

Lebesgue-Stieltjes Integral of  with respect to F as  

    dF =  d . 

where  is the Baire measure having F as it cumulative distribution function.  

If  is both positive and negative, we say that it is integrable w.r.t F if it is 

integrable w.r.t. . 

Definition :- If F is any monotone increasing function then F* is a monotone 

increasing function defined by  

  F*(x) = 
xy

lim F(y) 

which is continuous on the right and equal to F where ever F is continuous on 

the right.  Also  

(F*)* = F* and if F and G are monotone increasing functions wherever they 

both are continuous,          then F* = G*.  Thus there is a unique function F* 

which is monotone increasing continuous on the right and agrees with F 

wherever F is continuous on the right.  Then we define L-Stieltjes integral of  

w.r.t. F by  dF =   dF*. 

Proposition :- Let F be a monotone increasing function continuous on the 

right. If                             (a, b] 
1i

(ai, bi].  Then  

  F(b)  F(a)  
1i

[F(bi)  F(ai)] 

Proof :- Write i = (ai, bi) and select intervals as follows.  Let a k, say bk  

b.  Let k2 be such that 
2k1kb etc.  By the induction, this sequence comes to 

end when 
mkb > b.  Renuwhereing the intervals, we have chosen  

  U1, U2,…, Um where 

  ai+1 < bi < bi+1, i = 1, 2,…, m 1 
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  F(b)  F(a)  F(bm)  F(a1) 

           
m

1i

[F(bi)  F(ai)] 

           
1i

[F(bi)  F(ai)] 

Product Measures  

Let (X, S, u) and (Y, , v) be two fixed measure spaces.  The product semi-

ring S  of subsets of X Y is defined by  

  S   = {A  B; A S and B } 

The above collection S   is indeed a semiring of subsets of X Y. 

Now define the set function u v : S [0, ] by  

  u v (A B) = u(A). (B) 

for each A  B S . 

This set function is a measure on the product semiring S  , called the 

product measure of  and v. (proof given below) 

Theorem :- The set function u v : S  [0, ] defined by  

  u v (A B) = u(A). v(B) 

for each A  B S  is a measure 

Proof :- Clearly u v( ) = 0.  For the subadditivity of u v, let A B S  and 

(An  Bn) be a sequence of mutually disjoint sets of S  such that 

  A  B = 
1n

An  Bn. 

It must be established that 

  u(A). v(B) = 
1n

u(An). v(Bn)    …( ) 

Obviously ( ) holds if either A or B has measure zero.  Thus we can assume 

that  

  u(A)  0 and v(B)  0. 
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Since A B =
1n

nBnAχ , we see that 

  A(x). B(y) = 
1n

)y(χ).x(χ
nBnA  

holds for all x and y.  Now fix y B. 

Since )y(χ
nB equals one or zero, it follows that  

  A(x) =
ki

),x(χ
iA where k = {i N, y Bi} 

observe that the collection {Ai; i k}must be disjoint and thus 

  u(A) =
ki

u(Ai) holds.  Therefore 

  u(A). B(y) = )y(χ).A(u
nBn

1n

   

 …( ) 

holds for all y Y.  Since a term with (An) = 0 does not alter the sum in ( ) or 

( ), we can assume that u(An)  0 for all n.   Now if both A and B have finite 

measures, then integrating term by term, we see that (  holds.  On the other 

hand if either A or B has infinite measure, then 

  
1n

u(An). v(Bn) =  

must hold.  Indeed if the last sum is finite, then u(A) B(y) defines an integrable 

function which is impossible.  Thus in this case ( ) holds with both sides 

infinite.  Hence the result.   

The next few results will unveil the basic properties of the product measure 

u v.  As usual (u v)* denotes the outer measure generated by the measure 

space (X  Y, S , u v) on X Y. 

Theorem :- If A  X and B  Y are measurable sets of finite measure, then 

  (u v)* (A  B) = u*  v*(A  B) = u*(A). v*(B) 

Proof :- Clearly S  vu  holds.  Now let {An  Bn} be a sequence of 

S  such that A  B  
1n

(An  Bn).  Since by the last theorem, u*  v* is a 

measure on the semiring vu , it follows that 
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  u*  v*(A B) 
1n

u*  v* (An  Bn)   

             = 
1n

u v (An  Bn) 

and so 

  u*  v* (A  B)  (u v)* (A B) 

 On the other hand, if >0 is given, choose two sequences {An}  S and 

{Bn}   with A  
1n

An, B  
1n

Bn such that 

  
1n

u(An) < u*(A) +  and  

  
1n

v(Bn) < v*(B) + . 

But then A B  
1m1n

An  Bm holds and so 

  (u v)* (A  B)  
1n 1m

u v (An  Bm) 

     = 
1n 1m

u(An). v(Bm) 

     = )B(v.)A(u m
1m

n
1n

 

  < [u*(A) + ]. [v*(B) + ] 

for all  >0, that is  

  (u v)* (A  B)  u*(A). v*(B) = u* v*(A  B) 

Therefore 

  (u v)* (A  B) = u* v* (A  B) holds as required.  

Theorem :- If A is a u-measurable subset of X and B, a v-measurable subset of 

Y, then A  B is a u v measurable subset of X Y. 

Proof :- Let C D  S  with 
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  u v(C D) = u(C). v(D) < . 

To establish u v measurability of A B, it is enough to show that  

  (u v)* ((C D)  (A B)) + (u v)* ((C D) (A B)
C
)  u v 

(C D) 

If u v (C D) = 0, then the above inequality is obvious.  So we can assume 

u(C) <  and v(D)< .  Clearly  

  (C D)  (A B) = (C A)  (D B) 

  (C D)  (A B)
C
 = [(C A

C
)  (D B)]  [(C  A)  (D  B

c
)] 

       [(C A
C
)  (D  B

C
)] 

hold with every member of the above union having finite measure.  Now the 

subadditivity of (u v)* combined with the last theorem gives 

  (u v)* ((C D)  (A B)) + (u  v)* ((C D)  (A  B)
C
) 

    u*(C  A). v*(D  B) + u*(C A
C
). v* (D  B) 

      + u*(C  A). v*(D  B
C
) + u*(C  A

C
). v*(D  B

C
) 

   = [u* (C  A) + u*(C  A
C
)]. [v*(D  B) + v*(D  

B
C
)] 

   =  u(C). v(D) 

   = u v (C  D) 

as required. 

Remark :- In general, it is not true that the measure u*  v* is the only 

extension of u v from S   to a measure on vu .  However if both (X, S, 

u) and (Y, , v) are -finite measure spaces, then (X  Y, S  , u v) is 

likewise a -finite measure space, and therefore u*  v* is the only extension 

of u v to a measure on vu . Moreover since vu   vu  and the 

fact that (u  v)* is a measure on vu , it follows in this case that (u  v)* = u* 

 v* holds on vu .  

Definition :- If A is a subset of X Y, and x X, then the x-section of A is 

defined by  

  Ax = {y Y ; (x, y) A} 
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Clearly Ax is a subset of Y.  Similarly if y Y, then the y-section of A is 

defined by  

  Ay = {x X; (x, y) A} 

Clearly Ay is a subset of Y.  

Remark :- The following theorem shows that the relation between the u v 

measurable subsets of X Y and the measurable subsets of X and Y.  

Theorem :- Let E be a u v measurable subset of X Y with (u  v)* (E) < .  

Then for u-almost all x, the set Ex is a v-measurable subset of Y, and the 

function X v*(Ex) defines an integrable function over X such that  

  (u  v)* (E) =
X

v*(Ex) d u(x).   

 …(1) 

Similarly, for v-almost all y, the set E
y
 is a u-measurable subset of X and the 

function y u* (E
y
) defines an integrable function over such that  

  (u  v)* (E) = 
Y

u*(E
y
) dv(y)   

 …(2) 

Proof :- Due to symmetry of (1) and (2), it is enough to establish the first 

formula.  The proof goes by steps. 

Step I :- Assume E = A B S .  Clearly Ex = B if x A and Ex =  if x  A.  

Thus Ex is a v-measurable subset of Y for each x X and  

  v(Ex) = v(B) A(x)     

 …(3) 

holds for all x X.  

Since (u  v)* (E) = (u  v) (A  B) = u(A) . v(B) < , two possibilities arise : 

(a) Both A and B have finite measure.  In this case (3) shows that x v*(Ex) is 

an integrable function (actually, it is a step function). Such that  

(b) 
X

v*(Ex) d u(x) =  v(B) A du = u(A). v(B) = (u  v)* (E). 

(c)  Either A or B has infinite measure. 
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In this case, the other set must have measure zero and so (3) shows that 

v(Ex) = 0 for u-almost all x. Thus x v* (Ex) defines the zero function and 

therefore 

 
X

v*(Ex) du(x) = 0 = (u  v)* (E) 

Step II :- Assume that E is a -set of S .  Choose a disjoint sequence 

{En}of S  such that E = 
1n

En.  In view of Ex = 
1n

(En)x and he preceding 

step, it follows that Ex is a measurable subset of Y for each x X.  Now define 

f(x) = v*(Ex) and  

 fn(x) = 
n

1i

v((Ei)x) for each x X and all n.  By step I, each fn 

defines an integrable function and  

  fn du = 
X

n

1i

v ((Ei)x) d u(x)    

            = 
n

1i

u v (Ei)  (u v)*(E) <  

Since {(En)x} is a disjoint sequence of , we have 

  v*(Ex) = 
1n

v((En)x) and so fn(x) f(x)., 

holds for each x X.  Thus by Levi‟s theorem “Assume that a sequence {fn} of 

integrable functions satisfies fn  fn+1 a.e. for all n and lim  fn du < .  Then 

there exists an integrable function f such that fn  f a.e. and hence  fn du   f 

du holds” f defines an integrable function and  

  
X

v*(Ex) dux =  f du = lim  fn du 

      = 
1i

u v (Ei) = (u v)* (E) 

Step III :- Assume that E is a countable intersection of -sets of finite 

measure.  Choose a sequence {En} of -sets such that E = 
1n

En, 

  (u  v)* (E1)<  and En+1  En for all n. 

For each n, let gn(x) = 0 if 
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  v*((En)x) =  and gn(x) = v* ((En)x) if  

v*((En)x) < .  By step II, each gn is an integrable function over X such that  gn 

du = (u  v)* (En) holds.  In view of Ex = 
xn

1n

)E( , it follows that Ex is a v-

measurable set for each x X. Also since v*((E1)x)<  holds for u-almost all x, 

it follows that gn(x) = v*((En)x)  v*(Ex) holds for u-almost all x.  Thus x v* 

(Ex) defines an integrable function and  

  
X

v*(Ex) du(x) = lim  gn du = lim (u v)* (En) = (u  v)* (E) 

Step IV :- Assume that (u v)* (E) = 0, thus there exists a measurable set G, 

which is a countable intersection of -sets of finite measure such that  E  G 

and (u v)* (G) = 0.  By step III, 

  
X

v*(Gx) du(x) = (u  v)* (G) = 0 

and so v*(Gx) = 0 holds for u-almost all x.  In view of Ex  Gx for all x, we 

must have v*(Ex) = 0 for u-almost all x.  Therefore Ex is v-measurable for u-

almost all x and x v*(Ex) defines the zero function.  Thus 

  
X

v*(Ex) du(x) = 0 = (u  v)* (E). 

Step V :- The general case.  Choose a u v measurable set F that is a countable 

intersection of   -sets all of finite measure such that E  F and  

  (u  v)* (F) = (u  v)* (E).  Set G = F ~ E. 

Then G is a null set and thus by step IV, v*(Gx) = 0 holds for u-almost all x. 

Therefore Ex is v-measurable and v*(Ex) = v*(Fx) holds for u-almost all x.  By 

step III x v* (Fx) defines an integrable function and so x v*(Ex) defines an 

integrable function and  

  (u  v)*(E) = (u  v)*(F) = 
X

v*(Fx) d u(x) 

          = 
X

v*(Ex) d ux. 

holds.  The proof of the theorem is now complete. 

Definition :- Let f : X Y  R be a function.  Then the iterated integral f du 

dv is said to exist if f
y
 is an integrable function over X for v-almost all y and 
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the function g(y) =  f
y
 du = 

X

f(x, y) du(x) defines an integrable function over 

Y.  

If E is a u v measurable subset of X  Y with (u  v)* (E) < , then both 

iterated integrals E du dv and E dv du exist and  

  E du dv = E dv du = E d(u  v) 

        = (u  v)* (E) 

Since every u v step function is a linear combination of characteristic 

functions of u v measurable sets of finite measure, it follows that if  is a u v 

step function, then both iterated integrals   du dv and   dv du exist and 

moreover 

    du dv =   dv du =  d(u  v) 

The above identities regarding iterated integrals are special cases of a more 

general result known as Fubini‟s theorem.  

Fubini’s Theorem  

Let f : X Y  R be u v integrable function.  Then both iterated integrals exist 

and  

  fd (u  v) =  fdu dv = f dv du 

holds.  

Proof :- Without loss of generality, we can assume that f(x, y)  0 holds for all 

x. Choose a sequence { n} of step functions such that 

  0  n(x, y)  f(x, y) holds for all x and y. 

Thus 

  
YX

[ n (x, y) dv (y)] du(x) = n (u  v)  fd(u  v) < 

 …(1) 

Now by the last theorem, for each n, the function  

  gn(x) =  ( n)x dv = 
Y

n(x, y) dv(y) 

defines an integrable function over X and clearly gn(x)  holds for u-almost all 

x.  But then by Levi‟s Theorem “Assume that a sequence {fn} of integrable 
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functions satisfies fn  fn+1 a.e. for all n and lim  fn du < .  Then there exists 

an integrable function f such that fn  f a.e.”, there exists a u-integrable 

function g : X R such that gn(x)  g(x) u a.e. holds, that is there exists a u-

null subset A of X such that ( n)x dv  g(x)<  holds for all x  A.  Since ( n)x 

 fx holds for each x, it follows that fx is            v-integrable for all x  A and  

  gn(x) = ( n)x dv = 
Y

n(x, y) dv(y)  
Y

fx dv 

holds for all x  A. 

Now (1) implies that the function x
Y

fx dv defines an integrable function 

such that 

   f d(u v) = dvfx
YX

du =  f dv du 

Similarly, f d(u  v) =  fdu. dv and the proof of the theorem is complete. 

Remark :- The existence of the iterated integrals is by no means enough to 

ensure that the function is integrable over the product space.  As an example of 

this sort, consider X = Y = [0, 1] u = v =  (the Lebesgue measure) and  

  f(x, y) = 
222

22

)yx(

)yx(
 if (x, y)  (0, 0) and 

  f(0, 0) = 0. 

Then   

   f du dv = 
4

π
 and  f dv du =

4

π
 

Fubini‟s theorem shows of course that f is not integrable over [0, 1]  [0, 1] 

There is a converse to Fubini‟s theorem however according to which the 

existence of one of the iterated integrals is sufficient for the integrality of the 

function over the product space.  This result is known as Tonell‟s Theorem and 

this result is frequently used in applications.  

Measure and Topology 

We are often concerned with measures on a set X which is also a topological 

space and it is natural to consider conditions on the measure so that it is 

connected with the topological structure.  There seem to be two classes of 

topological spaces for which it is possible to carry out a reasonable theory. One 
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is the class of locally compact Hausdorff spaces and other is the class of 

complete metric spaces. The present chapter develops the theory for the class 

of locally compact Hausdorff spaces.  

 

Baire Sets and Borel Sets 

Let X be a locally compact Hausdorff space.  Let Cc(X) be the family 

consisting of all continuous real-valued functions that vanish outside a compact 

subset of X. If f is a real valued function, the support of f is the closure of the 

set {x ; f(x)  0}.  Thus Cc(X) is the class of all continuous real valued 

functions on X with compact support.  The class of Baire sets is defined to be 

the smallest    -algebra B of subsets of X such that each function in Cc(X) is 

measurable with respect to B.  Thus B is the -algebra generated by the sets 

{x; f(x)  } with f  Cc(X).  If  > 0, these sets are compact G ‟s.  Thus each 

compact G  is a Baire set.  Consequently B is the -algebra generated by the 

compact G s 

If X is any topological space, the smallest -algebra containing the closed sets 

is called the class of Borel sets.  Thus if X is locally compact, every Baire set is 

a Borel set.  The converse is true when X is a locally compact separable metric 

space, but there are compact spaces where the class of Borel sets is larger than 

the class of Baire sets.  

Baire Measure 

Let X be a locally compact Hausdorff space.  By a Baire measure on X, we 

mean a measure defined for all Baire sets and finite for each compact Baire set.  

By a Borel measure, we mean a measure defined on the -algebra of Borel sets 

or completion of such a measure. 

Definition :- A set E in a locally compact Hausdorff space is said to be 

(topologically) bounded if E is contained in some compact set i.e. E is a 

compact.  A set E is said to be -bounded if it is the union of a countable 

collection of bounded sets.  From now onwards, X will be a locally compact 

Hausdorff space. 

 Now we state a number of Lemmas that are useful in dealing with Baire 

and Borel sets.  

Lemma 1 :- Let K be a compact set, O an open set with K  O.  Then  

 K    H  O 

where U is a -compact open set and H is a compact G . 

Lemma 2:- Every -compact open set is the union of a countable collection of 

compact G s and hence a Baire set. 



INTEGRATION THEORY AND FUNCTIONAL ANALYSIS  32 

Lemma 3 :- Every bounded set is contained in a compact G .  Every -

bounded set E is contained in a -compact open set O.  If E is bounded, we 

may take O to be compact. 

Lemma 4 :- Let R be a ring of sets and let R  = {E; E R}. Then either R = R  

or else R  R  = 0.   In the latter case R  R  is the smallest algebra containing 

R.  If R is a -ring, then R  R  is a -algebra.  

Lemma 5 :- If E is a Baire set, then E or E  is -bounded. Both are -bounded 

if and only if X is -compact.  

Lemma 6 :- The class of -bounded Baire sets is the smallest -ring 

containing the compact G s. 

Lemma 7 :- Each -bounded Baire set is the union of a countable disjoint 

union of bounded Baire sets.   

Remark :- The following Proposition gives useful means of applying theorems 

about Baire and Borel sets in compact spaces to bounded Baire and Borel sets 

in locally compact spaces. 

Proposition :- Let F be a closed subset of X.  Then F is a locally compact 

Hausdorff space and the Baire sets of F are those sets of the form B F, where 

B is a Baire set in X.  Thus if F is a closed Baire set, the Baire subsets of F are 

just those Baire subsets of X which are contained in F.  The Borel sets of F are 

those Borel sets of X which are contained in F.  

Proof :- Let 

R = { E ; E = B F; B  Ba(X)} where Ba(X) is the class of Baire sets.  

Then R is a -algebra which includes all compact G s contained in F.  Thus 

Ba(F) R and each Baire set of F is of the form B F.  Let  

  B = {E X ; E F Ba(F)}.  Then  

B is a -algebra.  Let K be a compact G  in X .  Then K F is a closed subset 

of K and hence compact.  Since K is a G  in x, K F is a G  in F. Thus K F is 

a compact G  of F and so is in Ba(F).  Consequently Ba(X)  B and so each 

Baire set of X interests F in a Baire set of F.  

If F is a closed Baire subset of X, then B F is a Baire subset of X whenever B 

is.  Thus each Baire subset of F is of this form.  On the other hand for each 

Baire subset B of X with B  F we have B = B F and so B is a Baire subset of 

F.    

Continuous Functions with Compact Support 

Let X be a locally compact topological space.  If  : X R and S = {x X; (x) 

 0}.  Then the closure K of S is called the support of .  Suppose that  has 

support K where K is a compact subset of X.  Then  vanishes outside S.  

Conversely if  vanishes outside some compact set C and S  C as C is closed, 
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the closure K of S is contained in C, now K is a closed subset of the compact 

set C and as such K is compact.  Then  has compact support.  

Theorem :- Let X be a locally compact Hausdorff space, A and B non-empty 

disjoint subsets of X, A closed and B compact.  Then there is a continuous 

function  : X [0, 1] C of compact support such that (x) = 0 for all x in A 

and  

  (x) = 1 for all x in B. 

First we give some Lemma. 

Lemma 1 :- Let X be a Hausdorff space, K a compact subset and p K
c
.  Then 

there exists disjoint open subsets G, H such that p G and K H. 

Proof :- To any point x of K, there exist disjoint open sets Ax, Bx such that 

p Ax, x Bx.  From the covering {Bx} of K, there is a finite subcovering Bx1, 

Bx2,…, Bxn and the sets 

  G =
ii x

n

1i

n

1i

x BH,A      

satisfy the required conditions.  

Lemma 2 :- Let X be a locally compact Hausdorff space, K a compact subset, 

U an open subset and K U.  Then there exists an open subset V with compact 

closure V  such that  

  K  V  V   U . 

Proof :- Let G be the open set with compact closure G . If U = X, we simply 

take V = G.  In general G is too large, the open set G U is compact as its 

closure is a subset of G  but its closure may still contain points outside U.  

We assume that the complement F of U is not empty.  To any point p of F, 

there are disjoint open sets Gp, Hp such that p Gp, K Hp.  As F G  is 

compact, there are points p1, p2,…, pn in F such that 
np

2
p

1
p G,...,G,G cover 

F G .  We now verify at once that the open set V = G  

np
1

p H...H satisfy the conditions of the Lemma 2. 

Proof of the theorem :- Let U be the complement of A.  According to Lemma 

2, there is an open set V1/2 with compact closure such that  

  B ,UVV

2

1

2

1  

and then there are open sets 

4

3

4

1 V,V  with compact closure such that  

  B 

4

1

4

1

2

1

2

1

4

3

4

3 VVVVVV U 
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Continuing in this way we obtain open sets Vr for each dyadic rational number 

r = p/2
m

 in (0, 1) such that  

  B  Vr rV  U 

and 

  rV  Vs for r > s.      

  …(1) 

Now we must construct a continuous function  : X [0, 1].  To this end, 

define for each  r = p/2
m

 in (0, 1). 

  r(x) = r if x Vr. 

           = 0 otherwise 

and then  = r
r

ψsup . 

It follows at once that 0    1, that  = 0 on A and  = 1 on B. It follows 

that r and  are lower semicontinuous.  To prove that  is continuous, we 

introduce the upper semicontinuous function r and  defined by  

  r(x) = 1 if x rV , 

           = r otherwise 

and   = r
r

θInf . 

It is sufficient to show that  = . 

We can only have r(x) > s(x) if r > s x Vr and x sV .  But this is impossible 

by (1), whence r  s for all r, s and so   . 

On the other hand, suppose that (x) < (x) then there are dyadic rationals r, s 

in (0, 1) such that  

  (x) < r < s < (x) . 

As (x) < r, we have x  Vr and as (x) > s we have x sV  which again 

contradicts (1).  Thus   , combining these inequalities gives  =  and 

establishes the continuity of . 

Hence the result.  

Regularity of Measure  

Let  be a measure defined on a -algebra M of subsets of X where X is a 

locally compact Hausdorff space. and suppose that M contains the Baire sets.  

A set E M is said to be outer regular for (or  is outer regular for E) if  

  E = Inf { O : E  O, open, O M}      

It is said to be inner regular if 



SIGNED MEASURE 35 

  E = sup { K : K E, K compact, K  M} 

The set E is said to be regular for  if it is both inner and outer regular for . 

We say that the measure  is inner regular (outer regular, regular) if it is inner 

regular (outer regular, regular) for each set E M.  Lebesgue measure is a 

regular measure. 

For compact spaces X, there is complete symmetry between inner regularity 

and outer regularity.  A measurable set E is outer regular if and only if its 

complement is inner regular.  A finite measure on X is inner regular if and only 

if it is outer regular, and hence regular. When X is compact, every Baire 

measure is regular.  

Remark :- When X is no longer compact, we lose this symmetry because the 

complement of an open set need not be compact.  

Proposition :- Let  be a finite measure defined on a -algebra M which 

contains all the Baire sets of a locally compact space X.  If  is inner regular, it 

is regular.  

Proof :- Let E M, then  

  E  = sup { K; K E , K M and K compact}. 

But for each such a K, we have K open and E  K.  Hence  

  E = X  E  = Inf{ X  K} 

      = Inf  K 

       Inf { O; E  O} 

Thus  

  E = Inf { O : E  O;  O open and O M}. 

Theorem : - Let  be a Baire measure on a locally compact space X and E a -

bounded Baire set in X.  Then for  > 0, 

(i) There is a   - compact open set O with E O and  (O ~ E) < . 

(ii)  E = sup { K ; K E, K a compact G }. 

Proof :- Let R be the class of sets E that satisfy (i) and (ii) for each  > 0.  

Suppose E = UEn, where En R.  Then for each n, there is a -compact open 

set On with En  On and  

   (On ~ En) < 2
n
 .  Then O = U On 

is again a -compact open set with  

   (O ~ E)  U (On ~ En) 

and so  

  (O ~ E)   (On ~ En) <  
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Thus E satisfies (i)  

If for some, n, we have  En = , then there are compact G s of arbitrary large 

finite measure contained in En  E.  Hence (ii) holds for E.  If u En <  for 

each n, there is a Kn  En, Kn, a compact G  and  

  (En ~ Kn) < 2
n

 

Then 

   E = 
N

sup 
N

1n
nE  

          
N

sup 
N

1n
nK +  

Thus E satisfies (ii).  If E is a compact G , then there is a continuous real 

valued function  with compact support such that 0    1 and E =                       

{x ;  (x) = 1}.  Let On = {x ; (x) > 1 1/n}.  Then On is a -compact open set 

with nO compact.  Since O1 < , we have E = Inf  On.  Thus each compact 

G  satisfies (i) and it trivially satisfies (ii) 

Let X be compact.  Then E satisfies (i) if and only if E  satisfies (ii) and so the 

collection R of sets satisfying (i) and (ii) is a -algebra containing the compact 

G s.  Thus R contains all Baire sets and the prop.  holds when X is compact.  

For an arbitrary locally compact space X and bounded Baire set E, we can take 

H to be a compact G  and U to be a -compact open subsets of X such that  

  E  U  H. 

Then E is a Baire subset of H and so 

   (W  E) <  

Since W and U are -compact, so is O = W U.  Thus O is a -compact open 

set with E  O  W. 

  O ~ E  W ~E 

and 

  (O ~ E) < . 

Thus E satisfies (i).  Therefore all bounded Baire sets are in R. 

Since R is closed under countable unions and each -bounded Baire set is a 

countable union of bounded Baire sets, we see that every -bounded Baire set 

belongs to R .  

Remark :- If we had defined the class of Baire sets to be the smallest -ring 

containing the compact G s and taken a Baire measure to be defined on this -

ring, then the above theorem takes the form  
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“Every Baire measure is regular”.  If X is -compact, the -ring and the -

algebra generated by the compact G s are the same.  Hence we have the 

following corollary.    

Corollary :- If X is -compact, then every Baire measure on X is regular.  

Quasi-Measure :- A measure  defined on -algebra M which contains the 

Baire sets is said to be quasi-regular if it is outer regular and each open set O 

M is inner regular for . 

A Baire measure on a space which is not -compact need not be regular but we 

can require it to be inner regular or quasi-regular without changing its values 

on the -bounded Baire sets.  

Proposition :- Let  be a measure defined on a -algebra M containing the 

Baire sets. Assume either that  is quasi-regular or that  is inner regular. Then 

for each E M with E< , there is a Baire set B with  

  (E  B) = O 

Proof :- We consider only the quasi-regular case.  Let E be a measurable set of 

finite measure.  Since  is outer regular, we can find a sequence <On> of open 

sets with  

  On  On+1  E 

and   

   On <  E + 2
n
  

Since  is quasi-regular, there is a compact set Km  Om with  

  Km > Om  2
m

 

and we may take Km to be a G  set by Lemma 1.  Now 

  Km > Om  2
m

  E 2
m

 

   > On  2
n
  2

m
 

Set 

  Hm = 
mj

jK  

Then Hm is a Baire set, Hm  Om  On for m  n.  Also Hm  Hm+1, and  

   Hm  Km > On  2
n
 2

m
. 

Let B =  Hm.  Then B is a Baire set, B  On and  

  B = lim  Hm 

Thus 

  B  On  2
n
, 
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Since B  On and E  On, we have 

  B  E  (On ~B)  (On ~ E) 

and so 

  (B  E)  (On ~ B) + (On ~ E) 

    < 2
n
 + 2

n
 = 2

n+1
 

This is true for any n and so  

  (B  E) = 0. 

Proposition :- Let μ  be a non-negative extended real valued function defined 

on the class of open subsets of X and satisfying  

(i) μ O <  if O compact. 

(ii) μ O1  μ O2 if O1  O2. 

(iii) μ  (O1  O2) = μ  O1 + μ O2  if  O1  O2 = . 

(iv) μ (UOi)  μ Oi 

(v) μ (O) == sup {  U; U,OU compact} 

Then the set function * defined by  

  *E = Inf {μ O; E O} 

is a topologically regular outer measure. 

Proof :- The monotonicity and countable subadditivity of * follow directly 

from (ii) and (iv) and the definition of *.  Also *O = μ O for O open and so 

condition (ii) of the definition of regularity follows from hypothesis (iii) of the 

proposition and the condition (i) from the definition of *.  Since μ O <  for 

O  compact, we have * E <  for each bounded set E.  

Riesz-Markov Theorem  

Let X be a locally compact Hausdorff space.  By Cc(X), we denote as usual, the 

space of continuous real valued functions with compact support.  A real valued 

linear functional I on Cc(X) is said to be positive if I(f)  0 whenever f  0.  

The purpose of the following theorem is to prove that every positive linear 

functional on Cc(X) is represented by integration with respect to a suitable 

Borel (or Baire) measure.  In particular we have the following theorem : 

Statement of Riesz-Markov Theorem  

Let X be a locally compact Hausdorff space and I a positive linear functional 

on Cc(X).  Then there is a Borel measure  on X such that  

  I(f) =  f du 
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For each f Cc(X).  The measure  may be taken to be quasi-regular or to be 

inner regular. In each of these cases it is then unique. 

Proof :- For each open set O defineμ O by  

  μ O = sup {I(f); f Cc(X), O  f  1, sup f  O} 

Then μ  is an extended real valued function defined on all open sets and is 

readily seen to be monotone, finite on bounded sets and to satisfy the regularity 

(v) of the above Proposition.  To see that μ  is countably subadditive on open 

sets, let O = UOi and let f be any function in Cc(X) with              O  f  1 and 

sup f  O.  Thus there are non-negative functions 1, 2,…, n in Cc(X) with                       

sup i  Oi and  

  
n

1i
i = 1. 

on sup f.  Then f =  if, o  i f 1 and    

sup ( i f)  Oi.  Thus 

  If = 
n

1i

I( i f)  
n

1i

μ Oi 

    
1i

μ  Oi 

Taking the sup over all such f gives 

  μ O  
1i

μ  Oi 

and μ  is countably subadditive. 

 If O = O1  O2 with O1  O2 =  and fi  Cc(X), 0  fi  1 and sup fi  

Oi, then the function f = f1 + f2 has sup f  O and 0  f  1.  Thus  

  I f1 + If2  μ O. 

Since f1 and f2 can be chosen arbitrarily, subject to 0  fi  1 and sup fi  Oi, 

we have  

  μ O1 + μ O2  μ O, 

whence 

  μ O1 + μ O2 = μ O 

Thus μ  satisfies the hypothesis of the above proposition so μ  extends to a 

quasi-regular Borel measure.  
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We next proceed to show that If =  f du for each f Cc(X).  Since f is the 

difference of two non-negative functions in Cc(X), it is sufficient to consider          

f  0.  By linearity we may also take f 1. 

Choose a bounded open set O with sup f  O.  Set  

  Ok = {x; n f(x) > k 1} 

and Oo = O.  Then On+1 =  and 1kO  Ok. 

Define   k = 

k

1kk

1k

Oin0

OOin1k)x(nf

Oin1

 

Then   f = 
n

1kn

1
k 

We also have sup k  kO   Ok 1 and  

  K = 1 on Ok+1.  Thus 

  μ Ok+1   I k  μ Ok 1 

for k  1.  

Also  

  μ Ok+1  k dμ   μ Ok 

for k  1. 

Hence  

  O1  
n

1k

(I k  k)  μ O0 + μ O1 

Consequently  

  |If  fdu|  
n

2
μ O 

since n is arbitrary, 

  If = f dμ . 

Thus there is an inner regular Borel measure  which agrees with μ  on the         

-bounded Borel sets.  Since only the values of  on -bounded Baire sets 

enter into f du, we have 

  If =  f du. 

The unicity of μ  and  is obvious.  
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Measure and Topology 

 

We are often concerned with measures on a set X which is also a 

topological space and it is natural to consider conditions on the measure so 

that it is connected with the topological structure.  There seem to be two 

classes of topological spaces for which it is possible to carry out a 

reasonable theory. One is the class of locally compact Hausdorff spaces 

and other is the class of complete metric spaces. The present chapter 

develops the theory for the class of locally compact Hausdorff spaces.  

 

Baire Sets and Borel Sets 

Let X be a locally compact Hausdorff space.  Let Cc(X) be the family 

consisting of all continuous real-valued functions that vanish outside a 

compact subset of X. If f is a real valued function, the support of f is the 

closure of the set {x ; f(x)  0}.  Thus Cc(X) is the class of all continuous 

real valued functions on X with compact support.  The class of Baire sets 

is defined to be the smallest    -algebra B of subsets of X such that each 

function in Cc(X) is measurable with respect to B.  Thus B is the -algebra 

generated by the sets {x; f(x)  } with f  Cc(X).  If  > 0, these sets are 

compact G ’s.  Thus each compact G  is a Baire set.  Consequently B is the 

-algebra generated by the compact G s 

If X is any topological space, the smallest -algebra containing the closed 

sets is called the class of Borel sets.  Thus if X is locally compact, every 

Baire set is a Borel set.  The converse is true when X is a locally compact 

separable metric space, but there are compact spaces where the class of 

Borel sets is larger than the class of Baire sets.  

Baire Measure 

Let X be a locally compact Hausdorff space.  By a Baire measure on X, we 

mean a measure defined for all Baire sets and finite for each compact 

Baire set.  By a Borel measure, we mean a measure defined on the -

algebra of Borel sets or completion of such a measure. 

Definition :- A set E in a locally compact Hausdorff space is said to be 

(topologically) bounded if E is contained in some compact set i.e. E is a 

compact.  A set E is said to be -bounded if it is the union of a countable 

collection of bounded sets.  From now onwards, X will be a locally 

compact Hausdorff space. 

 Now we state a number of Lemmas that are useful in dealing with 

Baire and Borel sets.  

Lemma 1 :- Let K be a compact set, O an open set with K  O.  Then  

 K    H  O 
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where U is a -compact open set and H is a compact G . 

Lemma 2:- Every -compact open set is the union of a countable collection 

of compact G s and hence a Baire set. 

Lemma 3 :- Every bounded set is contained in a compact G .  Every -

bounded set E is contained in a -compact open set O.  If E is bounded, we 

may take O to be compact. 

Lemma 4 :- Let R be a ring of sets and let R  = {E; E R}. Then either R = 

R  or else R  R  = 0.   In the latter case R  R  is the smallest algebra 

containing R.  If R is a -ring, then R  R  is a -algebra.  

Lemma 5 :- If E is a Baire set, then E or E  is -bounded. Both are -

bounded if and only if X is -compact.  

Lemma 6 :- The class of -bounded Baire sets is the smallest -ring 

containing the compact G s. 

Lemma 7 :- Each -bounded Baire set is the union of a countable disjoint 

union of bounded Baire sets.   

Remark :- The following Proposition gives useful means of applying 

theorems about Baire and Borel sets in compact spaces to bounded Baire 

and Borel sets in locally compact spaces. 

Proposition :- Let F be a closed subset of X.  Then F is a locally compact 

Hausdorff space and the Baire sets of F are those sets of the form B F, 

where B is a Baire set in X.  Thus if F is a closed Baire set, the Baire 

subsets of F are just those Baire subsets of X which are contained in F.  

The Borel sets of F are those Borel sets of X which are contained in F.  

Proof :- Let 

R = { E ; E = B F; B  Ba(X)} where Ba(X) is the class of Baire 

sets.  Then R is a -algebra which includes all compact G s contained in 

F.  Thus Ba(F) R and each Baire set of F is of the form B F.  Let  

  B = {E X ; E F Ba(F)}.  Then  

B is a -algebra.  Let K be a compact G  in X .  Then K F is a closed 

subset of K and hence compact.  Since K is a G  in x, K F is a G  in F. 

Thus K F is a compact G  of F and so is in Ba(F).  Consequently Ba(X)  

B and so each Baire set of X interests F in a Baire set of F.  

If F is a closed Baire subset of X, then B F is a Baire subset of X 

whenever B is.  Thus each Baire subset of F is of this form.  On the other 

hand for each Baire subset B of X with B  F we have B = B F and so B is 

a Baire subset of F.    

Continuous Functions with Compact Support 
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Let X be a locally compact topological space.  If  : X R and S = {x X; 

(x)  0}.  Then the closure K of S is called the support of .  Suppose that 

 has support K where K is a compact subset of X.  Then  vanishes 

outside S.  Conversely if  vanishes outside some compact set C and S  C 

as C is closed, the closure K of S is contained in C, now K is a closed subset 

of the compact set C and as such K is compact.  Then  has compact 

support.  

Theorem :- Let X be a locally compact Hausdorff space, A and B non-

empty disjoint subsets of X, A closed and B compact.  Then there is a 

continuous function  : X [0, 1] C of compact support such that (x) = 0 

for all x in A and  

  (x) = 1 for all x in B. 

First we give some Lemma. 

Lemma 1 :- Let X be a Hausdorff space, K a compact subset and p K
c
.  

Then there exists disjoint open subsets G, H such that p G and K H. 

Proof :- To any point x of K, there exist disjoint open sets Ax, Bx such that 

p Ax, x Bx.  From the covering {Bx} of K, there is a finite subcovering 

Bx1, Bx2,…, Bxn and the sets 

  G =
ii x

n

1i

n

1i

x BH,A      

satisfy the required conditions.  

Lemma 2 :- Let X be a locally compact Hausdorff space, K a compact 

subset, U an open subset and K U.  Then there exists an open subset V 

with compact closure V  such that  

  K  V  V   U . 

Proof :- Let G be the open set with compact closure G . If U = X, we simply 

take V = G.  In general G is too large, the open set G U is compact as its 

closure is a subset of G  but its closure may still contain points outside U.  

We assume that the complement F of U is not empty.  To any point p of F, 

there are disjoint open sets Gp, Hp such that p Gp, K Hp.  As F G  is 

compact, there are points p1, p2,…, pn in F such that 

np
2

p
1

p G,...,G,G cover F G .  We now verify at once that the open set V = 

G  
np

1
p H...H satisfy the conditions of the Lemma 2. 

Proof of the theorem :- Let U be the complement of A.  According to 

Lemma 2, there is an open set V1/2 with compact closure such that  

  B ,UVV

2

1

2

1  



INTEGRATION THEORY AND FUNCTIONAL ANALYSIS  44 

and then there are open sets 

4

3

4

1 V,V  with compact closure such that  

  B 

4

1

4

1

2

1

2

1

4

3

4

3 VVVVVV U 

Continuing in this way we obtain open sets Vr for each dyadic rational 

number r = p/2
m

 in (0, 1) such that  

  B  Vr rV  U 

and 

  rV  Vs for r > s.      

  …(1) 

Now we must construct a continuous function  : X [0, 1].  To this end, 

define for each  r = p/2
m

 in (0, 1). 

  r(x) = r if x Vr. 

           = 0 otherwise 

and then  = r
r

ψsup . 

It follows at once that 0    1, that  = 0 on A and  = 1 on B. It follows 

that r and  are lower semicontinuous.  To prove that  is continuous, 

we introduce the upper semicontinuous function r and  defined by  

  r(x) = 1 if x rV , 

           = r otherwise 

and   = r
r

θInf . 

It is sufficient to show that  = . 

We can only have r(x) > s(x) if r > s x Vr and x sV .  But this is 

impossible by (1), whence r  s for all r, s and so   . 

On the other hand, suppose that (x) < (x) then there are dyadic 

rationals r, s in (0, 1) such that  

  (x) < r < s < (x) . 

As (x) < r, we have x  Vr and as (x) > s we have x sV  which again 

contradicts (1).  Thus   , combining these inequalities gives  =  and 

establishes the continuity of . 

Hence the result.  

Regularity of Measure  
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Let  be a measure defined on a -algebra M of subsets of X where X is a 

locally compact Hausdorff space. and suppose that M contains the Baire 

sets.  A set E M is said to be outer regular for (or  is outer regular for 

E) if  

  E = Inf { O : E  O, open, O M}      

It is said to be inner regular if 

  E = sup { K : K E, K compact, K  M} 

The set E is said to be regular for  if it is both inner and outer regular for 

. 

We say that the measure  is inner regular (outer regular, regular) if it is 

inner regular (outer regular, regular) for each set E M.  Lebesgue 

measure is a regular measure. 

For compact spaces X, there is complete symmetry between inner 

regularity and outer regularity.  A measurable set E is outer regular if and 

only if its complement is inner regular.  A finite measure on X is inner 

regular if and only if it is outer regular, and hence regular. When X is 

compact, every Baire measure is regular.  

Remark :- When X is no longer compact, we lose this symmetry because 

the complement of an open set need not be compact.  

Proposition :- Let  be a finite measure defined on a -algebra M which 

contains all the Baire sets of a locally compact space X.  If  is inner 

regular, it is regular.  

Proof :- Let E M, then  

  E  = sup { K; K E , K M and K compact}. 

But for each such a K, we have K open and E  K.  Hence  

  E = X  E  = Inf{ X  K} 

      = Inf  K 

       Inf { O; E  O} 

Thus  

  E = Inf { O : E  O;  O open and O M}. 

Theorem : - Let  be a Baire measure on a locally compact space X and E a 

-bounded Baire set in X.  Then for  > 0, 

(iii) There is a   - compact open set O with E O and  (O ~ E) < . 

(iv)  E = sup { K ; K E, K a compact G }. 
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Proof :- Let R be the class of sets E that satisfy (i) and (ii) for each  > 0.  

Suppose E = UEn, where En R.  Then for each n, there is a -compact 

open set On with En  On and  

   (On ~ En) < 2
n
 .  Then O = U On 

is again a -compact open set with  

   (O ~ E)  U (On ~ En) 

and so  

  (O ~ E)   (On ~ En) <  

Thus E satisfies (i)  

If for some, n, we have  En = , then there are compact G s of arbitrary 

large finite measure contained in En  E.  Hence (ii) holds for E.  If u En < 

 for each n, there is a Kn  En, Kn, a compact G  and  

  (En ~ Kn) < 2
n

 

Then 

   E = 
N

sup 
N

1n
nE  

          
N

sup 
N

1n
nK +  

Thus E satisfies (ii).  If E is a compact G , then there is a continuous real 

valued function  with compact support such that 0    1 and E = {x; 

(x) = 1}.  Let On = {x ; (x) > 1 1/n}.  Then On is a -compact open set 

with nO compact.  Since O1 < , we have E = Inf  On.  Thus each 

compact G  satisfies (i) and it trivially satisfies (ii) 

Let X be compact.  Then E satisfies (i) if and only if E  satisfies (ii) and so 

the collection R of sets satisfying (i) and (ii) is a -algebra containing the 

compact G s.  Thus R contains all Baire sets and the prop.  holds when X 

is compact.  

For an arbitrary locally compact space X and bounded Baire set E, we can 

take H to be a compact G  and U to be a -compact open subsets of X such 

that  

  E  U  H. 

Then E is a Baire subset of H and so 

   (W  E) <  

Since W and U are -compact, so is O = W U.  Thus O is a -compact 

open set with E  O  W. 
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  O ~ E  W ~E 

and 

  (O ~ E) < . 

Thus E satisfies (i).  Therefore all bounded Baire sets are in R. 

Since R is closed under countable unions and each -bounded Baire set is 

a countable union of bounded Baire sets, we see that every -bounded 

Baire set belongs to R .  

Remark :- If we had defined the class of Baire sets to be the smallest -ring 

containing the compact G s and taken a Baire measure to be defined on 

this -ring, then the above theorem takes the form  

“Every Baire measure is regular”.  If X is -compact, the -ring and the 

-algebra generated by the compact G s are the same.  Hence we have the 

following corollary.    

Corollary :- If X is -compact, then every Baire measure on X is regular.  

Quasi-Measure :- A measure  defined on -algebra M which contains the 

Baire sets is said to be quasi-regular if it is outer regular and each open set 

O M is inner regular for . 

A Baire measure on a space which is not -compact need not be regular 

but we can require it to be inner regular or quasi-regular without 

changing its values on the -bounded Baire sets.  

Proposition :- Let  be a measure defined on a -algebra M containing the 

Baire sets. Assume either that  is quasi-regular or that  is inner regular. 

Then for each E M with E< , there is a Baire set B with  

  (E  B) = O 

Proof :- We consider only the quasi-regular case.  Let E be a measurable 

set of finite measure.  Since  is outer regular, we can find a sequence 

<On> of open sets with  

  On  On+1  E 

and   

   On <  E + 2
n
  

Since  is quasi-regular, there is a compact set Km  Om with  

  Km > Om  2
m

 

and we may take Km to be a G  set by Lemma 1.  Now 

  Km > Om  2
m

  E 2
m

 

   > On  2
n
  2

m
 

Set 
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  Hm = 
mj

jK  

Then Hm is a Baire set, Hm  Om  On for m  n.  Also Hm  Hm+1, and  

   Hm  Km > On  2
n
 2

m
. 

Let B =  Hm.  Then B is a Baire set, B  On and  

  B = lim  Hm 

Thus 

  B  On  2
n
, 

Since B  On and E  On, we have 

  B  E  (On ~B)  (On ~ E) 

and so 

  (B  E)  (On ~ B) + (On ~ E) 

    < 2
n
 + 2

n
 = 2

n+1
 

This is true for any n and so  

  (B  E) = 0. 

Proposition :- Let μ  be a non-negative extended real valued function 

defined on the class of open subsets of X and satisfying  

(vi) μ O <  if O compact. 

(vii) μ O1  μ O2 if O1  O2. 

(viii) μ  (O1  O2) = μ  O1 + μ O2  if  O1  O2 = . 

(ix) μ (UOi)  μ Oi 

(x) μ (O) == sup {  U; U,OU compact} 

Then the set function * defined by  

  *E = Inf {μ O; E O} 

is a topologically regular outer measure. 

Proof :- The monotonicity and countable subadditivity of * follow directly 

from (ii) and (iv) and the definition of *.  Also *O = μ O for O open and 

so condition (ii) of the definition of regularity follows from hypothesis (iii) 

of the proposition and the condition (i) from the definition of *.  Since 

μ O <  for O  compact, we have * E <  for each bounded set E.  

Riesz-Markov Theorem  
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Let X be a locally compact Hausdorff space.  By Cc(X), we denote as usual, 

the space of continuous real valued functions with compact support.  A 

real valued linear functional I on Cc(X) is said to be positive if I(f)  0 

whenever f  0.  The purpose of the following theorem is to prove that 

every positive linear functional on Cc(X) is represented by integration with 

respect to a suitable Borel              (or Baire) measure.  In particular we 

have the following theorem : 

Statement of Riesz-Markov Theorem  

Let X be a locally compact Hausdorff space and I a positive linear 

functional on Cc(X).  Then there is a Borel measure  on X such that  

  I(f) =  f du 

For each f Cc(X).  The measure  may be taken to be quasi-regular or to 

be inner regular. In each of these cases it is then unique. 

Proof :- For each open set O defineμ O by  

  μ O = sup {I(f); f Cc(X), O  f  1, sup f  O} 

Then μ  is an extended real valued function defined on all open sets and is 

readily seen to be monotone, finite on bounded sets and to satisfy the 

regularity (v) of the above Proposition.  To see that μ  is countably 

subadditive on open sets, let O = UOi and let f be any function in Cc(X) 

with              O  f  1 and sup f  O.  Thus there are non-negative 

functions 1, 2,…, n in Cc(X) with                       sup i  Oi and  

  
n

1i
i = 1. 

on sup f.  Then f =  if, o  i f 1 and    

sup ( i f)  Oi.  Thus 

  If = 
n

1i

I( i f)  
n

1i

μ Oi 

    
1i

μ  Oi 

Taking the sup over all such f gives 

  μ O  
1i

μ  Oi 

and μ  is countably subadditive. 

 If O = O1  O2 with O1  O2 =  and fi  Cc(X), 0  fi  1 and sup fi 

 Oi, then the function f = f1 + f2 has sup f  O and 0  f  1.  Thus  

  I f1 + If2  μ O. 
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Since f1 and f2 can be chosen arbitrarily, subject to 0  fi  1 and sup fi  

Oi, we have  

  μ O1 + μ O2  μ O, 

whence 

  μ O1 + μ O2 = μ O 

Thus μ  satisfies the hypothesis of the above proposition so μ  extends to a 

quasi-regular Borel measure.  

We next proceed to show that If =  f du for each f Cc(X).  Since f is the 

difference of two                 non-negative functions in Cc(X), it is sufficient 

to consider f  0.  By linearity we may also take f 1. 

Choose a bounded open set O with sup f  O.  Set  

  Ok = {x; n f(x) > k 1} 

and Oo = O.  Then On+1 =  and 1kO  Ok. 

Define   k = 

k

1kk

1k

Oin0

OOin1k)x(nf

Oin1

 

Then   f = 
n

1kn

1
k 

We also have sup k  kO   Ok 1 and  

  K = 1 on Ok+1.  Thus 

  μ Ok+1   I k  μ Ok 1 

for k  1.  

Also  

  μ Ok+1  k dμ   μ Ok 

for k  1. 

Hence  

  O1  
n

1k

(I k  k)  μ O0 + μ O1 

Consequently  

  |If  fdu|  
n

2
μ O 

since n is arbitrary, 
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  If = f dμ . 

Thus there is an inner regular Borel measure  which agrees with μ  on 

the -bounded Borel sets.  Since only the values of  on -bounded Baire 

sets enter into f du, we have 

  If =  f du. 

The unicity of μ  and  is obvious.  

 

 

      

Unit-II 

Normed Linear Spaces   

 

First of all we introduce some sort of distance measuring device to vector 

spaces and ultimately introduce limiting notions.  In other words, our aim is to 

study a class of spaces which are endowed with both a topological and 

algebraic structure.  This combination of topological and algebraic structures 

opens up the possibility of studying linear transformations of one such space 

into another. First of all we give some basic concepts and definitions. 

Definition 1. A vector space or linear vector space X is an additive Abelian 

group (whose elements are called vectors) with the property that any scalar  

and any vector x can be combined by an operation called scalar multiplication 

to yield a vector x in such a way that  

(i) (x +y) = x + y 

(ii) ( + )x = x + x, 

(iii) ( )x = ( x) 

(iv) 1.x = x 

 x, y  X and ,  are scalars. The two primary operations in a linear 

space addition and scalar multiplication are called the linear operations. The 

zero element of a linear space is usually referred to as the origin. 

A linear space is called a real linear space or a complex linear space according 

as the scalars are real numbers or complex numbers. 
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Definition 2. An isomorphism f between linear spaces (over the same scalar 

field) is a bijective linear map that is f is bijective and  

  f( x + y) = f(x) +  f(y) 

Two linear spaces are called isomorphic (or linearly isomorphic) if and only if 

there exists an isomorphism between them. 

Definition 3. A semi-norm on a linear space X is a function  : X R 

satisfying 

(i) (x)  0  x X. 

(ii) ( x) = | | (x) for all x X and (scalar)  

(iii) (x +y)  (x) + (y) for all x, y X. 

Property (i) is called absolute homogeneity of  and property (ii) is called 

subadditivity of .  Thus a semi-norm is non-negative real, subadditive, 

absolutely homogeneous function of the linear space e.g. (x) = |x| is a semi-

norm on the linear space C of complex numbers.  Similarly if f : X C is a 

linear map, then (x) = |f(x)| is a semi-norm on X. 

Thus a semi-normed linear space is an ordered pair (X, ) where  is a semi-

norm on X. 

Definition 4. A norm on a linear space X is a function ||   || : X R satisfying  

(i) ||x||  0 and ||x|| = 0 if and only if x = 0 for x X 

(ii) || x|| = | |. ||x|| 

(iii) ||x+y||  ||x|| + ||y|| 

we observe that a semi-norm becomes a norm if it satisfies one additional 

condition i.e. 

  ||x|| = 0 iff x = 0 

Further, ||x|| is called norm of x.  The non-negative real number ||x|| is 

considered as the length of the vector x.  

A normed linear space is an ordered pair (X, || ||) where || || is a norm on X. 

Metric on Normed linear Spaces 

Definition 5. Let X be an arbitrary set.  It is called a metric space if there exists 

a function  d : X   X R (called distance or metric function) satisfying  
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(i) d(x, y)  0 

(ii) d(x, y) = 0 if and only if x = y.    

(iii) d(x, y) = d(y, x) 

(iv) d(x, z)  d(x, y) +d(y, z)   [Triangle inequality] 

        for any x, y, z X 

(X, d) is called a metric space. 

Let N be a normed linear space.  We introduce a metric in  N defined by  

  d(x, y) = || x y|| 

This metric (distance function) satisfies all axioms of the definition of norm.  

Hence a normed linear space N is a metric space with respect to the metric d 

defined above.  But every metric space need not be a normed linear space since 

in every metric space there need not be a vector space  structure defined e.g. 

the vector space X  0 with the discrete metric defined by  

  d(x, y) = 
yxif1

yxif0
 

is not a normed linear space.  

Remark :-  In the definition of norm ||x|| = 0  x = 0 is equivalent to the 

condition 

  |x||  0 if x  0 

Also the fact that ||x|| > 0 is implied by the second and third condition of norm  

  ||0|| = ||0.1|| = 0.||1|| = 0 

and ||0|| = ||x x||  ||x|| + ||x|| = 2||x|| 

 2||x||  0 

 ||x||  0. 

Remark :- As in the case of real line, the continuity of a function can be given 

in terms of convergence of certain sequence.  We can alternatively define 

continuity in terms of convergence of sequence in normed linear space also. 
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Definition 6. Let (E, ||.||E) and (F, ||.||F) be two normed linear spaces 

respectively.  We say that f is continuous at x0 E if given >0,   > 0 

whenever ||x x0||E <  

 ||f(x) f(x0)||F <  

Since every normed linear space is a metric space, this definition of 

continuity is same in it as the definition of continuity in metric space. 

Thus f is continuous at x0 E iff 

whenever   xn x0 in E 

  f(xn) f(x0) in F.  

Remark : In normed linear spaces, convergence is defined as  

  x = 
n

lim xn or xn x by ||xn x|| 0 as n   

This convergence in normed linear space is called convergence in norm or 

strong convergence.  

Definition 7. A sequence <xn> in a normed linear space is a Cauchy sequence 

if given >0, there exists a positive integer m0 such that 

  m, n  m0  ||xm  xn|| < . 

Definition 8. A normed linear space N is called complete or Banach space iff 

every Cauchy sequence in it is convergent that is if for each Cauchy sequence 

<xn> in N, there exist an element x0 in N such that xn  x0.  A complete 

normed linear space is called a Banach space.  

Some properties of Normed Linear Spaces 

Theorem 1. Let N be a normed linear space over the scalar field F.  Then 

(i) The map ( , x) x from F N N is continuous 

(ii) The map (x, y)  x+y from N  N  N is continuous.  

(iii) The map x ||x|| from N to R is continuous. 

Proof :- To prove (i) we must show that if n  and xn x, then nxn x.  

So we assume n  and xn x i.e. | n | 0, ||xn x|| 0.   

Then || n xn  x|| = || n(xn x) + ( n )x|| 
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    | n| ||xn x|| + | n |.  ||xn|| 0 

and so (i) holds.  

To prove (ii) we suppose that xn x, yn y i.e. ||xn x|| 0 and ||yn y|| 0/ 

Then by triangle inequality 

  ||(xn + yn) (x +y)|| = ||(xn x) + (yn y)|| 

    ||xn x|| + ||yn y|| 0 

and so xn +yn  x +y and hence (ii) holds.  Before proving (iii), we establish 

the inequality 

  | || x||  ||y|| |  ||x y||     …( ) 

We note that in a normed linear space 

  ||x|| = ||y + (x y)||  ||y|| + ||x y|| 

  ||x||  ||y||  ||x y||     …(1) 

On interchanging the roles of x and y, we find that  

  ||y||  ||x||  ||y x|| = ||x y||    …(2) 

From (1) and (2), it follows that  

  |  ||x||  ||y||  |  ||x y|| 

We now prove (iii).  Let xn x, then from the above inequality, 

  |  ||xn||  ||x||  |  ||xn x|| 0 

which implies that ||xn||  ||x||  Thus we have shown that xn x   ||xn||  ||x||. 

Thus the map || || : N R is continuous.  Hence the result.  

Remark (1) (i) and (ii) show that scalar multiplication and addition are jointly 

continuous where as (iii) shows that norm is a continuous function. 

(2) The introduction of a norm in a linear space is called norming 

Theorem 2 :- In a normed linear space, every convergent sequence is a 

Cauchy sequence. 
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Proof : Suppose that the sequence <xn> in a normed linear space N converges 

to a point x0 N.  To show that it is Cauchy sequence, let >0 be given.  Since 

the sequence <xn> converges to x0, there exists a positive integer m0 such that 

n  m0  ||xn x0|| <
2

.  Hence for all m, n  m0, we have 

 ||xm xn|| = ||xm x0 + x0 xn||  ||xm x0|| + ||xn x0|| <
2

+
2

 = . 

Thus the convergent sequence <xn> is a Cauchy sequence.  

Further Properties of Normed spaces 

By definition , a subspace Y of a normed space X is a subspace of X 

considered as a vector space , with the norm obtained by restricting the norm 

on X to the subset Y. This norm on Y is said to be induced by the norm on X. 

If Y is closed in X , then Y is called a closed subspace of X. Thus , a subspace 

Y of a Banach X is considered as a normed space. Hence we donot require Y to 

be complete. 

Theorem 1: A subspace Y of a Banach space X is complete if and only if the 

set Y is closed in X. 

Proof : The result directly follows from “A subspace M of a complete metric 

space X is itself complete if and only if the set M is closed in X. 

Definition :-  Infinite series can now be defined in a way similar to that in 

calculus. In fact, if < xk >is a sequence in a normed space X , we can associate 

with < xk > the sequence <Sn > of partial sums 

  Sn = x1 + x2 + ……… + xn 

For n = 1, 2,…… If < Sn > is convergent , say Sn  S that is || Sn – S ||  0 , 

Then the infinite series or briefly the series 

1K

Kx  = x1 + x2 + ………     

  (1) 

is said to converge or to be convergent , S is called the sum of the series and 

we write 

  S =
1K

Kx  = x1 + x2 + ……… 
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If || x1 || + || x2 || + …….. converges ,then the series (1) is said to be absolutely 

convergent. However in a normed space X absolute convergence implies 

convergence if and only if X is complete. 

The concept of convergence of a series can be used to define a basis as follows 

: 

If a normed space x contains a sequence < en > with the property that for every 

x  X , there is a unique sequence of scalars < n > such that  

|| x – ( 1 e1 + ……….. + n en) ||  0  as n   (6) 

then < en > is called a Schauder Basis for X. The series 

  
1K

K eK  

which has the sum x is then called the expansion of x with respect to < en > and 

we write 

  x = 
1K

K  eK  

Finite Dimensional Normed Spaces and Subspaces  

Theorem : Every finite dimensional subspace Y of a normed space X is 

complete. In particular , every finite dimensional normed space is complete. 

To prove the theorem , we prove a Lemma , 

Lemma : Let {x1 , x2 ,………., xn} be a linearly independent set of vectors in a 

normed space X (of any dimension). Then there is a number C > 0 such that for 

every choice of scalars 1 , 2 , ……., n , we have  

|| 1 x1 + ………. + n xn ||  C ( | 1 | + ……. + | n | ) (C > 0)    (1) 

Proof : We write S = | 1 | + | 2 | + …… + | n |. If S = 0 , all i are zero , so 

that (1) holds for any C. Let S > 0 , then (1) is equivalent to the inequality 

which we obtain from (1) by dividing by S and writing j = j/S that is  

 || 1 x1 + ……… + n xn ||  C 1||
1

n

j

j     (2) 

Hence it is sufficient to prove the existence of a C > 0 such that (2) holds for 

every n-tuple of scalars 1 ,……. , n with  

   | j | = 1 . 
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Suppose that this is false. Then there exists a sequence < ym > of vectors 

 ym = 1
(m)

 x1 + ……… + n
(m)

 xn  1||
1

)(
n

j

m

j  

such that 

  || ym ||  0  as m  . 

Since  | j
(m) 

| = 1 , we have | j
(m) 

|  1. Hence for each fixed j , the sequence  

  ( j
(m)

) = ( j
(1)

 , j
(2)

 ,…….) 

is bounded. Consequently , by the Bolzano - Weierstrass theorem , ( 1
(m)

) has  

a convergent subsequence. Let 1 denote the limit of that subsequence and let < 

y1,m > denote the corresponding subsequence of < ym >. By the same argument 

, <y1,m > has a subsequence < y2,m > for which the corresponding subsequence 

of scalars 2
(m)

 converges , let 2 denote the limit –continuing in this way , after 

n steps we obtain a subsequence 

  < yn,m > = (yn,1 , yn,2 ,……….)  of < ym > 

whose terms are of the form 

  yn,m = 
n

j

m

j

1

)(
xj  

n

j

m

j

1

)(
1||  

with scalars j
(m)

 satisfying j
(m)

  j as m  . 

Hence as m   , 

  yn,m  y = 
n

j

j

1

 xj  

where  | j| = 1 so that not all j can be zero. Since {x1 ,…….. , xn } is a 

linearly independent set , we thus have y  0. On the other hand , yn,m  y 

implies || yn,m ||  || y || by the continuity of the norm. Since || ym ||  0 by 

assumption and < yn,m > is a subsequence of < ym > , we must have          || yn,m 

||  0. Hence || y || = 0 , so that y = 0. But this contradicts that y  0 , and the 

lemma is proved. 

Now we prove the theorem. 

Proof of the theorem : We consider an arbitrary Cauchy sequence < ym > in Y 

and show that it is convergent in Y, the limit will be denoted by y. Let dim Y = 
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n and {e1 , e2 ,……,en} any basis for Y. Then each ym has a unique 

representation of the form 

  ym = 1
(m)

 e1 + ……… + n
(m)

 en  

Since < ym > is a Cauchy sequence , for every  > 0 , there is an N such that || 

ym – yn || <  when   m , r > N. From this and the above Lemma , we have for 

some C > 0 , 

   > || ym – yr ||  =   || 
r

j 1

( j
(m)

 - j
(r)

) ej || 

       C
r

j 1

| j
(m)

 - j
(r)

 | 

where m , r > N. Division by C > 0 gives 

  | j
(m)

 - j
(r)

 |  
n

j 1

| j
(m)

 - j
(r)

 | < 
C

  (m , r > N) 

This shows that each of the n sequences 

  ( j
(m)

) = ( j
(1)

 , j
(2)

 ,………. )  j = 1, 2 , …., n. 

is Cauchy in R or C. Hence it converges let j denote the limit. Using these n 

limits , 1 , 2 ,…. , n , we define 

  y = 1 e1 + 2 e2 + …………. + n en  

clearly y  Y. Further  

  || ym – y || = || 
n

j 1

( j
(m) 

- j) ej ||  
n

j 1

| j
(m)

 - j || . || ej || 

On the right j
(m)

  j. Hence || ym – y ||  0 , that is ym  y. This shows that 

< ym > is convergent in Y. Since <ym> was an arbitrary Cauchy sequence in Y, 

This proves that Y is complete. 

Remark : From the above theorem and the result “A subspace M of a 

complete metric space X is complete if and only if the set M is closed in X” , 

we get the following :  

Theorem : Every finite dimensional subspace Y of a normed space X is closed 

in X.  

Remark : Infinite dimensional subspaces need not be closed e.g. Let X = C[0, 

1] and Y = span{x0 , x1 ,……} where xj(t) = t
j
 so that Y is the set of 

polynomials. Y is not closed in X. 

Quotient Space 
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Definition 9. Let M be a subspace of a linear space L and let the coset of an 

element x in L be defined by  

  x + M = { x + m ; m M} 

Then the distinct cosets form a partition of L and if addition and scalar 

multiplication are defined by 

  (x +M) + (y+M) = (x+y) +M 

and  (x +M)  x +M 

then these cosets constitute a linear space denoted by L/M and called the 

quotient space of L with respect to M.  The origin in L/M is the coset 0 +M = 

M and the negative of  

  x +M is ( x) +M 

Theorem 3. Let M be a closed linear subspace of a normed linear space N.  If 

the norm of a coset x +M in the quotient space N/M is defined by  

  || x+M|| = Inf {||x+m||; m M}   …(1) 

Then N/M is a normed linear space.  Further if N is a Banach space.  Then so is 

N/M. 

Proof :- We first verify that (1) defines a norm in the required sense.  It is 

obvious that ||x+M||  0. since || x+m|| is a non-negative real number and every 

set of non-negative real numbers is bounded below, it follows that inf {||x+m||; 

m M} is non negative.  That is 

  ||x +M||  0  x + M N/M 

Also ||x +M|| = 0  there exists a sequence {mk} in M such that ||x +mk|| 0 

 x is in M 

 x + M = M = The zero element of N/M. 

Next we have 

  ||(x +M) + (y +M) = ||(x +y) +M|| 

   = Inf {||x +y +m||; m M} 

   = Inf {||x +y +m +m ||; m and m  M} 

   = Inf {||(x +m) + (y+m )|| ; m, m M} 
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    Inf {||x +m||; m M} + Inf {||y +m ||. m M} 

   = ||x +M|| + ||y + M|| 

  || (x+M) || = Inf {|| (x +m) ||; m M} 

   = Inf {| | ||x+m||; m M} 

   = | | Inf {||x+m||; m M} 

   = | | ||x+M|| 

Finally we assume that N is complete and we show that N/M is also complete.  

If we start with a Cauchy sequence in N/M,  Then it is sufficient to show that 

this sequence has a convergent subsequence.  It is clearly possible to find a 

subsequence {xn+ M} of the original Cauchy sequence such that  

  ||(x1 +M)  (x2 +M)|| <
2

1
 

  || (x2 +M)  (x3 +M) || <
4

1
 

and in general  

  || (xn +M)  (xn+1 +M)|| <
n2

1
  

we prove that this sequence is convergent in N/M.  We begin by choosing any 

vector y1 in x1 + M and we select y2 in x2 +M such that ||y1  y2|| <
2

1
.  We next 

select a vector y3 in x3 +M such that ||y2 y3||<
4

1
.  Continuing in this way we 

obtain a sequence {yn} in N such that ||yn yn+1|| < n2

1
.  If    m < n, then 

  ||ym yn|| = ||ym ym+1) + (ym+1  ym+2) +…+ (yn 1  yn)|| 

    ||ym  ym+1|| + ||ym+1  ym+2|| +…+ ||yn 1  yn|| 

   < 
1n1mm 2

1
...

2

1

2

1
 

   < ...
2

1

2

1
1mm
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   = 
1m

m

2

1

2

1
1

)2/1(
 

So {yn} is a Cauchy sequence in N.  Since N is complete, there exists a vector 

y in N such that yn y.  Finally  

  ||(xn+M)  (y + M)|| = ||xn y +M|| 

    Inf {||xn y+m||; m M} 

    ||xn +m y|| for all m M 

But yn = xn + mn for some mn M 

    ||yn y||  0 since yn y. 

Hence xn+M y + M  N/M 

 N/M is complete. 

Definition 10. A series 
1n

an , an X is said to be convergent to x X, where 

X is a normed linear space if the sequence of partial sums <Sn> where                

Sn = 
n

1i

 ai converges to x i.e. for every >0, there exists n0 N such that 

||Sn x|| <  for n  n0.  A series 
1n

an is said to be absolutely convergent if 

1n

 ||an|| is convergent. 

Since every normed linear space is a metric space, hence every convergent 

sequence in it is Cauchy but not conversely. 

The following theorem gives a nice characterization of a Banach space in terms 

of series. 

Theorem  4 :- A normed linear space is complete if and only if every 

absolutely convergent series in X is convergent. 

Proof :- Let X be complete.  For each positive integer n, let xn be an element of 

X such that 
1n

||xn|| < . Let yk =
K

1n

xn.  Then  

  ||yp+k  yk|| = 
k

1n
n

pk

1n
n xx  
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         = 
pk

1kn
nx  

          
pk

1kn

||xn||  0 as k . 

Hence 1kky  is a Cauchy sequence in X and since X is complete, there 

exists x X such that 

  x = 
1n

n

k

1n
n

k
k

k
xxlimylim  

Thus the series 
1n

nx  converges. 

Conversely suppose every absolutely convergent series in X is convergent.  Let 

<xn> be a Cauchy sequence in X.  For each positive integer k, there is a 

positive integer nk such that  

  ||xn xm|| < 
k2

1
 for all n, m  nk. 

Choose nk+1 > nk.  Let y1 = 
1nx  and  

  yk+1 = ,xx
kn1kn k  1. 

 
1k

||yk|| < .  Therefore there exists y X such that  

  y = 
m
lim  

mn

m

1k m
k xlimy   

Since  <xn> is cauchy, 
n
lim xn is also y. 

Hence the result. 

Riesz Lemma :- Let X be a proper closed linear subspace of a normed linear 

space X over the field K.  Let 0 <  < 1, then  x  X such that  

  ||x || = 1 and 
Yy

Inf ||x y||  . 

Theorem 5 :- Let X be normed linear space.  The closed unit ball  

  B = {x X ; ||x||  1} 
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in X is compact if and only if X is finite dimensional. 

Proof :- Let X be finite dimensional. Since B is closed and bounded.  It 

follows from Heine-Borel theorem that it is compact. 

Conversely suppose that B is compact but X is infinite dimensional.  Choose 

x1 X with ||x1|| = 1.  This x1 generates a one-dimensional subspace X1 of X.  

Since every finite dimensional subspace of a normed linear space is closed, it 

follows that X1 is closed.  Now X1 is a proper subspace of X and dim X = .  

By Riesz-Lemma there is an x2 X of norm 1 such that 

  ||x2 x1||  
2

1
. 

The set {x1, x2} generates a two dimensional proper closed subspace X2 of X.  

By Riesz Lemma, there is an x3 of norm 1 such that for all x X2, we have  

  ||x3 x||  
2

1
 

In particular 

  ||x3 x1||  
2

1
 

and  ||x3 x2||  
2

1
. 

Proceeding by induction, we obtain a sequence <xn> of elements of B such that  

  ||xm xn||  
2

1
 (m  n) 

i.e. {xn} can not have a convergent subsequence which contradicts the 

compactness of B.  Hence the result.  

Examples of Banach Spaces  

The scalar field in each of the following examples will be either R or C 

whichever is appropriate. 

Example 1: Consider linear spaces R and C of real numbers and complex 

numbers respectively. We introduce norm of a number x in R or C by defining 

|| x || = | x |. Under this norm, both R and C are Banach spaces. 
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Example 2: Consider the linear spaces R
n
 and C

n
 of all n tuples x = (x1, 

x2,…..,xn) of real and complex numbers. These spaces can be made into 

normed linear spaces by introducing the norm defined by || x || = 
2

1

1

2||
n

i

ix  

We obtain n – dimensional Euclidean and unitary spaces both of which are 

complete and hence Banach. It can be easily verified that the norm introduced 

satisfies first two properties of norm. To show the validity of triangle 

inequality, we need the following two inequalities. 

Cauchy’s inequality: Let x = (x1, x2,…..,xn) and y = (y1, y2,…..,yn) be two n – 

tuples of real or complex numbers. Then 

   
n

1i

2

1

n

1i

2
i

2

1

n

1i

2
iii |y||x||yx|  

Proof: We first remark that if a and b are any two non – negative real numbers, 

then a
1/2

. b
1/2

  .
2

ba
 Infact, on squaring both sides and rearranging, it is 

equivalent to 0  (a – b)
2
 which is obviously true. If x = 0 or y = 0, the 

assertion is clear. We therefore assume that x  0 or y  0. We define ai and bi 

by  

   ai = 

2

i

||x||

|x|
   and      bi = 

2

i

||y||

|y|
. 

Since a
1/2

. b
1/2

  .
2

ba
 

       
2

||y||/|y|||x||/|x|

||y||.||x||

|yx| 22
i

22
iii

 

Summing these inequalities as i varies from 1 to n, we obtain 

   1
2

11

||y||.||x||

|yx|
n

1i
ii

 

and hence 

            
n

i

ii yx
1

||   || x ||. || y || 
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which proves 
n

i

ii yx
1

||   || x ||. || y || . 

Minkowski’s – inequality : Let x = (x1, x2,……,xn) and y = (y1, y2,…….,yn) 

be two n – tuples of real or complex numbers. Then  

   
2

1

1

2
2

1

1

2
2

1

1

2 ||||||
n

i

i

n

i

i

n

i

ii yxyx . 

or   || x + y ||  || x || + || y || 

Proof: Using Cauchy‟s inequality, we have the following chain of relations. 

   || x + y ||
2
 = 

n

i 1

| xi + yi | . | xi + yi | 

         
n

i 1

| xi + yi | (| xi | + | yi |) 

       =  
n

i 1

| xi + yi | . | xi | +  
n

i 1

| xi + yi | . | yi | 

        || x + y || . || x || + || x + y || . || y || 

       = || x + y || (|| x || + || y ||) 

If || x + y || = 0, the inequality to be proved is trivially true. If || x + y ||  0, then 

dividing the inequality (1) through by || x + y ||, we obtain 

 

   || x + y ||  || x || + || y || . 

and Minkowski inequality is established. 

It follows from Minkowski inequality that triangle inequality in 
n
 or C

n
 holds. 

Hence R
n
 or C

n
 are normed linear spaces with respect to co-ordinate wise 

addition and scalar multiplication and the norm defined by || x || =  
2

1

1

2||
n

i

ix  

We further claim that R
n
 and C

n
 are complete and hence Banach. We prove the 

completeness of R
n
. The proof for C

n
 is similar. Let < fm > be a Cauchy 

sequence in R
n
. If  > 0 is given, then for all sufficiently large m and m , we 

have || fm - fm  || < ,  || fm - fm  || < 
2
 and   

n

i 1

| fm(i) - fm (i) |
2
 < 

2
 and from 
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this we observe that | fm(i) - fm (i) | <  for each i and all sufficiently large m 

and m . The sequence < fm > therefore converges pointwise to a limit function f 

defined by f(i) = lim fm(i). Since the set {1, 2, ….,n} is finite. 

This convergence is uniform. We can thus find a positive integer m0 such that | 

fm(i) – f(i) | <
2/1n

for all m  m0 and every i. Squaring each of these 

inequalities and summing as i varies from 1 to n yields 

n

i 1

| fm(i) – f(i) |
2
 < 

2
 or || fm – f || <  for all m  m0 . 

This shows that the Cauchy sequence < fm > converges to the limit f and so R
n
 

is complete. 

Example 3: Let p be a real number such that 1  p < . We denote by n

pl , the 

space of all n – tuples x = (x1, x2,….., xn) of scalars with the norm defined by  

   || x ||p = 
p

1
n

1i

p
i |x|  

Since the norm defined in the last example is obviously the special case of this 

norm which corresponds to p = 2, so the real and complex spaces nl2 are the n – 

dimensional Euclidean and unitary spaces R
n
 and C

n
. Let x = (x1,….., xn) and y 

= (y1, y2,….., yn) and let  be any scalar. Then n

pl  is a linear spaces with 

respect the operations 

   x + y = (x1 + y1,………., xn + yn) and  

    x = (  x1, ……………,  xn) 

Since the norm introduced above is non – negative and absolute homogeneous, 

so to show that n
pl is a normed linear space, it is sufficient to prove that 

 

   || x + y ||p  || x ||p + || y ||p . 

To show this, we first establish the following inequalities.  

Holder’s inequality: Let p and q be real numbers greater than 1, with the 

properties that 
qp

11
 = 1 (Such numbers are called conjugate indices). Then 

for any complex number 

   x = (x1, x2, …., xn) and y = (y1, y2,……., yn). 
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n

i 1

| xi yi |  
p

1

n

1i

p
i |x|

q

1
n

1i

q
i |y|  

or in our notations 

   
n

i 1

| xi yi |  || x ||p . || y ||q 

Proof:  If x = 0 or y = 0, the inequality is obvious. So assume that both are non 

– zero. Set 

   ai = 

q

q

i

i

p

p

i

||y||

y
band

||x||

x
 

Then using 

   
q

b

p

a
ba iiq

i

p

i

/1/1  (a, b  0) 

We have 

   
q

b

p

a

||y||||x||

|yx| ii

qp

ii  

or   
p
q

q
i

p
p

p
i

qp

ii

||y||

|y|

q

1

||x||

|x|

p

1

||y||||x||

|yx|
 

Summing these inequalities as i varies from 1 to n, we have 

   
p
q

q
i

n

1i

p
p

p
i

n

1i

qp

ii

n

1i

||y||

|y|

q

1

||x||

|x|

p

1

||y||||x||

|yx|

 

           = 
q
q

q
q

p
p

p
p

||y||

)||y(||

q

1

||x||

)||x(||

p

1
 

           = 1
11

qp
 

    
n

i 1

| xi yi |  || x ||p . || y ||q    

We notice that when p = q = 2. Holder‟s inequality converts into Cauchy‟s 

inequality. 

Minkowski’s inequality: Let p be a real number such that p  1. Then for any 

complex numbers 

   x = (x1,….., xn) and y = (y1, y2,….., yn) 
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p

1

p
n

1i
i

p

1

p
n

1i
i

p

1

n

1i

p
ii |y||x||yx|  

or   || x + y ||p  || x ||p + || y ||p 

Proof: The inequality is trivial when p = 1. So assume p > 1. Using Holder‟s 

inequality, we obtain 

   || x + y || p

p  =  
n

i 1

| xi + yi |
p
 

         = 
n

i 1

|xi + yi |. | xi + yi |
p-1

 

          
n

i 1

| xi | | xi + yi |
p-1

 + 
n

i 1

| yi |  | xi + yi |
p-1

  

          
q

1

n

1i

q)1p(
ii

p

1

n

1i

p
i |yx||x|    

          + 
q

1

n

1i

q)1p(
ii

p

1

n

1i

p
i |yx||y|  

Since (p – 1)q = p, we have 

          = 
q

p
.

p

1

n

1i

p
ii

p

1

n

1i

p
i |yx||x|    

           + 
q

p
.

p

1

n

1i

p
ii

p

1

n

1i

p
i |yx||y|  

         = || x ||p . || x + y || qp

p

/  + || y ||p. || x + y || qp

p

/  

         = (|| x ||p + || y ||p) . (||x + y || qp

p

/ ) 

If || x + y ||p = 0, then the result is trivial. If || x + y ||p  0, then dividing 

inequality (1), throughout by || x + y || qp

p

/ , we obtain 

   
q/p

p

q/p
p

ppq/p
p

p
p

||yx||

||yx||
).||y||||x(||

)||yx(||

||yx||
 

    || x + y ||
q

p
p

p   || x ||p + || y ||p 

    || x + y ||
q

1
1p

p   || x ||p + || y ||p  
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    || x + y || 1

p   || x ||p + || y ||p  since 
q

1

p

1
 = 1 

             
q

1
1

p

1
 

Thus || x + y ||p  || x ||p + || y ||p. 

In view of the Minkowski‟s inequality, it follows that n

pl  is a normed linear 

space. 

Now we prove completeness of n

pl . 

Let < xm > 1m  be a Cauchy sequence in n

pl . 

We write  

   xm = (x m

1 , x m

2 ,……., x
m

n ) 

Let  > 0 be given, since < xm > is a Cauchy sequence, there exists a +ve 

integer m0 such that 

   l , m  m0  || xm – xl ||p <  

    || xm – xl ||
p

p  < 
p
 

   
n

i 1

| x
)(m

i  - x
)( l

i  |
p
 < 

p    
(1) 

   | x
)(m

i  - x
)( l

i  |
p
 < 

p 
i = 1, 2,……., n. 

   | x
)(m

i  - x
)( l

i  | < 
      

This shows that the sequence < xi
m

 > 1m  is a  Cauchy sequence in C or R and 

completeness of R and C implies that each of these sequence converges to a 

point say zi in C or R such that 

 

   
m

lim
 x

)(m

i  = zi (i = 1, 2, …., n)  (2) 

we will now show that the Cauchy sequence < xm > converges to the point z = 

(z1, z2,……, zn)  n

pl . To prove this let i   in (1), they by (2) for m  m0, we 

have 

   
n

i 1

| x
)(m

i  - zi |
p
 < 

p
  || xm – z || p

p  < 
p
 

    || xm – z ||p <  
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Consequently the Cauchy sequence < xm > converges to z  n

pl . Hence n

pl  is 

complete and therefore it is a Banach space. 

Example 4: Let p be a real number such that 1  p   and lp denote the space 

of all sequences x = <x1, x2,……,xn,…….> of scalars s that 
1n

| xn |
p
 < . 

Show that lp is a Banach space under the norm 

   || x ||p = 
p

n

p

nx

1

1

||  

Solution: [N1]: Since each 
1n

| xn |
p
  0  we have || x ||p  0 

and || x ||p = 0    
p

n

p

nx

1

1

||  = 0  
1n

| xn |
p
 = 0 

                 | xn |
p
 = 0   n = 1, …..,         

              xn = 0  n = 1, ……,  

                         x = < x1, x2,…..,xn….. > = 0 

[N2] is    || x + y ||p  || x ||p + || y ||p 

   || x + y ||p = 
p

n

p

nn yx

1

1

||  (1  p  ) 

        
p

n

p

nx

1

1

||  + 
p

n

p

ny

1

1

||  

        [Minkowski‟s inequality for sequence] 

       = || x ||p + || y ||p 

[N3]   ||  x ||p = 
p

n

p

nx

1

1

||  

     = 
p

n

p

n

p x

1

1

||||  

     = |  | 
p

n

p

nx

1

1

||  = |  | . || x ||p. 

Thus lp is a normed linear space. 

To prove that lp is complete. 
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Let < xn > 1n be a Cauchy sequence in lp. Since each xn is itself a sequence of 

scalars. We shall denote an element xm  by 

 

   xm = < x1
(m)

, x2
(m)

,……….., xn
(m)

,….> 

Where    
1n

| xn
(m) 

|
p
 < . Since each < xn > is a cauchy sequence in lp, given 

 > 0,  a +ve integer m0 such that n , m  m0. 

    || xn – xm ||p <      (1) 

In particular  n  m0  || xn – 
0mx ||p <     (2) 

Thus if n  m0, then 

|| xn ||p = || xn – 
0mx + 

0mx  ||p  || xn – 
0mx  ||p + || 

0mx  ||p <  + || 
0mx  ||p 

if  + || 
0mx  ||p = A so that A > 0, 

Then 

   
p

1

1n

pm
n |x| < A 

   || xn ||p < A for A  m0.    (3) 

As in the above examples, from (1), it can be shown that for fixed i, the 

sequence < x 1

)(

n

n

i  is a Cauchy sequence in C or R and consequently it must 

converge to a number say zi. 

Let z = < z1, z2,……., zn > we assert that z  lp and the cauchy sequence < xn > 

converges to z  lp and we first show that z  lp, from (3) we have for n  m0 

   || xn ||
p
p  < A

p
  

1i

| x
)(n

i |
p
 < A

p 

Hence for any +ve integer L, we have 

   
L

i 1

| x
)(n

i |
p
 < A

p 
(n  m0)   (4) 

But for i = 1,….., L, we have  x
)(n

i   zi as n  . Hence letting n   in (4), 

we obtain 

   
L

i 1

| zi |
p
  A

p
 (L = 1, 2,…) 

    
1i

| zi |
p
  A

p
 <  

This proves that z = < zn > 1n  is in lp. 

Finally from (1), for n, m  m0 



SIGNED MEASURE 73 

   || xn – xm || p

p  < 
p
   

1i

| x
)(n

i  x
)(m

i |
p
 < 

p
 

Hence for any +ve integer L, we have 

  
L

i 1

| x
)(n

i    x
)(m

i |
p

  < 
p
 (n, m  m0)] 

Letting m   and using 
m

lim
 x

)(m

i  = zi  

we obtain 

  
L

i 1

| x
)(n

i    zi |
p

  < 
p
  for all n  m0  

Example 5: (The space l2). Let l2 denote the linear space of all sequences x = < 

x1, x2,….> of all scalars such that 

   
1n

| xn |
2
 <  

Show that l2 is a Banach space under the norm || x || = 
2

1

1

2||
n

nx . 

 

Solution: This space is called Hilbert coordinate space or sequence space.  

 

This is a particular case of the previous example with p = 2. If the scalars are 

real, then l2 is known as infinite dimensional Euclidean space and is denoted by 

R  . If the scalars are complex, then l2 is called infinite dimensional unitary 

space denoted by C . 

Example 5.  Let p be a positive real number. A measurable function f defined 

on [0, 1] is said to belong to the space L
p
 = L

p
 [0, 1] if  

pf ||
1

0
. 

Thus L
1
 consists precisely of the Lebesgue integrable functions on [0, 1]. Since 

| f + g |
p
  2

p
 (| f |

p
 + | g |

p
), it follows that f + g  L

p
 if f, g  L

p
. Also f is in 

L
p
, whenever f is and therefore  f +  g  L

p
 whenever f, g  L

p
. For a 

function f in L
p
, we define 

   || f || = || f ||p = 
ppf

1
1

0
||  

we observe that || f || = 0  f = 0 almost everywhere. Thus one of the 

requirement for a space to be a normed linear space is not satisfied. To 

overcome this difficulty, we consider two measurable functions to be 

equivalent if they are equal almost every where. If we do not distinguish 

between equivalent functions, then L
p
 space shall become a normed linear 

space. Thus we should say that the elements of L
p
 are not functions but rather 

equivalence classes of functions. 
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If  is a constant, then ||  f || = |  |. || f ||. Thus to show that the linear space L
p
 

is normed linear space, it is sufficient to show that || f + g ||  || f || + || g ||. To 

show this again we establish two inequalities: 

Holder’s Inequality: If p and q are non – negative extended real numbers such 

that 
qp

11
 = 1 and if f  L

p
 and g  L

q
, then f g  L

1
 and  

   | f g |  || f ||p . || g ||q 

Proof: The case p = 1 and q = 1 is straight forward. We assume therefore that 1 

< p <  and consequently 1 < q < . Let us first suppose that 

   || f ||p = || g ||q = 1. Using the inequality 

   
 1-

    + (1 - ) ,  and  are non – negative 

reals. 

Taking    = | f(t) |
p
,  = | g(t) |

q
 

    = 
p

1
, 1 -  = 1 -  

p

1
 = 

q

1
,  we obtain 

   | f(t) . g(t) |  
p

1
 | f(t) |

p
 + 

q

1
 | g(t) |

q
 

Now integration yields 

   | f g |  
p

1
 | f |

p
 + 

q

1
 | g |

q
 = 1  (1) 

If || f || = 0 or || g || = 0, then the inequality to be established is trivial. Let f and 

g be any elements of L
p
 and L

q
 with || f ||  0. Then 

p||f||

f
and 

qg

g

||||
 both have 

norm 1. Substituting them in (1) gives 

 

   
qpqp ||g||

|g|
.

||f||

|f|
|fg|

||g||||f||

1
  1 

and hence 

   | f g |  || f ||p . || g ||q 

Minkowski’s Inequality:  If f and g are in L
p
, then so is f + g and  

   || f + g ||p  || f ||p + || g ||p 

Proof: Since | f + g |
p
  2

p
 (| f |

p
 + | g |

p
), therefore f, g  L

p
 implies f + g  L

p
, 

the inequality is clear when p = 1, so we assume that p > 1. Let q > 1 such that 

p

1
 + 

q

1
 = 1. Then (p – 1) q = p. Also 
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  | f + g |
p
 = | f + g | . | f + g |

p-1
 

  | f + g |
p

   | f | . | f + g |
p-1

 + | g | . | f + g |
p-1

  (1) 

We note that 

   [| f + g |
p-1

]
q
 = | f + g |

(p-1)q
 = | f + g |

p
 <  

   since p q – q = p 

Therefore | f + g |
p-1

  L
q
. Since f, g  L

p
 and we have just shown that | f + g |

p-

1
  L

q
, Holder‟s inequality (proved above) implies that | f | . | f + g |

p-1
 and | g | . 

|f + g |
p-1

 are in L
1
 and  

 

   | f | . | f + g |
p-1

  || f ||p . || ( | f + g |
p-1

) ||q 

   | g | | f + g |
p-1

  || g ||p . || ( | f + g |
p-1

 ) ||q 

But, by definition of norm,
 

   || ( | f + g |
p-1

) ||q = { | f + g |
(p-1)q

 } 
1/q

 

       = { | f + g |
p

 }
1/q

 

       = { || f + g || p

p }
1/q

 

       = { || f + g ||p}
p/q

 

Thus 

   | f | . | f + g |
(p-1)

  || f ||p { || f + g ||p }
p/q

  (2) 

| g | . | f + g |
(p-1)

  || g ||p { || f + g ||p }
p/q

  (3) 

Combining (1), (2) and (3), we have 

    

   || f + g || p

p   ( || f ||p + || g ||p ) { || f + g ||p }
p/q

 

Dividing throughout by  { || f + g ||p }
p/q

, we obtain 

   || f + g ||p  || f ||p + || g ||p 

which completes the proof of Minkowski‟s inequality. 

We have proved therefore that L
p
 space is a normed linear space. Now we 

prove that it is a complete space.  We require some results.  



INTEGRATION THEORY AND FUNCTIONAL ANALYSIS  76 

A series nf  in a normed linear space is said to be summable to sum S if S is 

in the space and the sequence of partial sums of the series converges to S, that 

is, 

   || S  
n

i 1

fi ||  0 

In such a case, we write S = 
1i

fi. The series nf  is said to be absolutely 

summable if                      
1n

|| fn || < . 

We know that absolute convergence implies convergence in case of series of 

real numbers. This is not true in general for series of elements in a normed 

linear space. But this implication holds if the space is complete. 

Completeness of L
p
 (Riesz – Fisher Theorem):  For 1  p < , L

p
 – spaces 

are complete.  

or 

 If f1, f2,…… form a Cauchy sequence in L
p
, that is || fn– fm ||p  0 as n, m  

 there is an f  Lp  such that 

 

   || fn – f ||p  0. 

Proof: To show that the Cauchy sequence < fn > converges, we construct a 

subsequence of this sequence which converges almost every where on X as 

follows. 

Since < fn > is a Cauchy sequence, then for  = 
2

1
,  a +ve integer n1 s. that 

   n,  m  n1  || fn – fm ||p < 
2

1
 

Similarly for  = 

2

2

1
, we can choose a +ve integer n2 > n1 s. that n, m  n2 

    || fn – fm ||p < 

2

2

1
 

In general having closed n1,…., nk let nk+1 > nk be s. that 

    || fn – fm ||p < 

1

2

1
k

 

for all n, m  nk+i we assert that the subsequence < 
knf  > 1k  converges a . e to a 

limit function,          f  Lp. 

From the construction of < 
knf > it is evident that 
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1k

|| 
1knf – 

knf ||p <  
1k

k

2

1
 = 

2

1
1

2

1

= 1  (1) 

If we define 

  gk = | 
1nf  | + | 

2nf  – 
1nf | +……. + | 

1knf  –
knf | = [

knf ] 

For k = 1, 2, 3,…… Then < gk > is an increasing sequence of non – negative 

measurable functions s. that 

|| g
p

k ||1 = || gk ||
p

p  = [ || { | 
1nf  | + | 

2nf   – 
1nf  | + ……+ | 

1knf  – 
knf | } ||p ]

p
 

               [ || 
1nf  ||p + 

k

i 1

|| 
1inf  – 

inf  ||p ]
p
     

by Minkowski‟s inequality. 

   [ || 
1nf  ||p + 

1i

|| 
1inf – 

inf  ||p ]
p
 

              < [ || 
1nf  ||p + 1]

p
  by (1) 

             <    || g p
k ||1 <  

or          | gk |
p
 du <  

Let g = 
k
lim gk.  Then by Monotone convergence theorem and the 

above estimate of g
p

k , we have 

   | g |
p
 du = 

k

lim
| g

p

k | du <  

i.e.    [ | 
1nf  | +

1i

| 
1inf – 

inf  | ]
p
 du <    Hence g  Lp. 

It follows that   

   [ | 
1nf  | +

1i

|  
1inf – 

inf | ]
p
 <  

a.e and so the series  

   
1i

|  
1inf  (x) – 

inf  (x) | 

converges a. e and consequently the series  

   
1nf (x) + 

1i

 (
1inf  (x) – 

inf  (x)) 
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Converges a.e. The k – th partial sum of this series is fnk+1 (x). and so the 

sequence < fnk (x) > 1k   

converges to a some non – negative measurable function f(x) for all x  A 

where A is measurable and u(A) = 0. Define f(x) = 0 for all x  A. It is easy to 

see that f is measurable and complex valued on X. 

 

We will now show that f  Lp. Let  > 0 be given. Choose l so large that  

   s, t  nl   || fs – ft ||p <  

Then for k  l and m > nl, we have 

   || fm – 
knf  ||p <   p

1
p

nm du|ff|
k

 <  

    |fm – 
knf |

p
 du < 

p
    (1) 

By Fatou‟s Lemma, we have 

   |f – fm |
p
 du = 

k
lim | 

knf  – fm |
p
 du  

p
 by (2) 

Thus for each m > nl, the function f – fm is in Lp and so f = (f – fm)+fm is also in 

L
p
 and 

n
lim || f – fn ||p = 0.  Thus f  Lp is the limit of the sequence < fn >. 

Hence Lp is complete. 

 

Example 6: Consider the linear space of all n – tuples x = (x1,……,xn) of 

scalars and define the norm by  

 

   || x ||  = max {| x1 |, | x2 |,……., | xn |}  [or sup | xi |] 

This space is denoted by l n .  

Show that (l n , || x ||  ) is a Banach space. (Also called the space of bounded 

sequence) 

 

Solution: We first prove that l n  is a normed linear space 

[N1] Since each | xn |  0  || x ||   0 

and    || x ||  = 0   max { | x1 |, | x2 |,…., | xn |} = 0 

   | x1 | = 0, | x2 | = 0,………., | xn | = 0 

    x1 = 0,………, xn = 0 

    (x1 ,……, xn) = 0  x = 0 

[N2]  Let x = ( x1,……, xn) and y = (y1,….., yn) 

Then  || x + y ||  = max { | x1 + y1 | , | x2 + y2 |,……, | xn + yn |}. 
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     max { | x1 | + | y1 |, | x2 | + | y2 |,….., | xn | + | yn | } 

       max { | x1 |, | x2 |,….., | xn |} + max { | y1 |, | y2 |,….., | yn |} 

      = || x ||  + || y || . 

[N3] if  is any scalar, then 

   ||  x ||  = max { |  x1 |, |  x2 |,….., |  xn |} 

     = max { |  | | x1 |, |  | | x2 |,….., |  | | xn |} 

     = |  | max { | x1 |, | x2 |,……, | xn | 

     = |  | || x || . 

Hence l n  is a normed linear space. We now show that it is a complete space. 

Let < xm > 1m  be any cauchy sequence in l n . Since each xm = < x1
m

, x2
m

, ……, 

xn
m 

> Let  > 0 be given,  a +ve integer m0 s.that l , m  m0 

    || xm – xl ||  <  

    max { | x m

1  - x l

1 |, | x m

2 - x l

2 |,……, | x
m

n - x
l

n | <  

    | x
)(m

i  - x
)( l

i | < ,  i = 1,…., n. 

This shows that for fixed i, < x
)(m

i > 1m is a Cauchy sequence of real (or 

complex) numbers. Since C  or R is complete, it must converge to some zi  

C  or R. Thus the Cauchy sequence < xm > converges to z = ( z1, z2,…., zn ). 

Rest of the proof is simple. Hence l
n

 is a Banach space.  

Show that l  is a Banach space. 

Example 7:  Let C(X) denote the linear space of all bounded continuous scalar 

valued functions defined on a topological space X. Show that C(X) is a Banach 

space under the norm 

   || f || = 
)X(Cf

sup { | f (x) |, x  X} 

Solution: Vector addition and scalar multiplication are defined by 

   (f  + g) x = f(x) + g(x), (  f) x =  f(x) 

C(X) is linear space under these operations. We now show that C(X) is a 

normed linear space. 
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[N1] Since | f(x) |  0  x  X, we have 

   || f ||  0 

and    || f || = 0  sup { | f(x) |, x  X} = 0 

       | f (x) | = 0  x  X 

       f(x) = 0  x  X 

       f = 0 (zero function). 

[N2]   || f + g || = sup { | (f + g)(x) | ; x  X} 

     = sup { | f(x) + g(x) |; x  X} 

      sup { | f(x) | + | g(x) |; x  X} 

      sup { | f(x) |; x  X} 

       + sup { | g(x) | x  X} 

     = || f || + || g || 

[N3]   ||  f || = sup { | (  f) (x) |; x  X} 

              = sup { |  f(x) | ; x  X} 

              = sup { |  | | f(x) |; x  X} 

              = |  |. sup { | f(x) |; x  X} 

              = |  | || f ||. 

Hence C(X) is a normed linear space. Finally we prove that C(X) is complete 

as a metric space. Let < fn > be any Cauchy sequence in C(X). Then for a 

given  > 0,  a positive integer m0 such that 

   m, n  m0  || fm   fn || <  
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          sup {| (fm – fn) (x) |; x  X} <  

          sup {| fm(x) – fn(x) |; x  X} <  

          | fm(x) – fn(x) | <   x  X. 

But this is the Cauchy‟s condition for uniform convergence of the sequence of 

bounded continuous scalar valued functions.  Hence the sequence < fn > must 

converge to a bounded continuous function on X. It follows that C(X) is 

complete and hence it is a Banach space. 

Continuous Linear Transformation 

Definition: Let N and N  be linear spaces with the same system of scalars. A 

mapping T from L into L  is called a linear transformation if 

   T(x + y) = T(x) + T(y) 

   T(  x) =  T(x) 

or equivalently T(  x +  y) =  T(x) +  T(y). 

Also T(0) = T(0. 0) = 0 and  

   T( x) =  T(x) 

A linear transformation of one linear space into another is thus a 

homomorphism of first space into the second for it is a mapping which 

preserves the linear operations. 

Definition: Let N and N  be normed linear spaces with the same scalars and let 

T be a linear transformation of N into N . We say that T is continuous, mean 

that it is continuous as a mapping of the metric space N into the metric space 

N . [since every normed space is a metric space d(x, y) = || x – y ||]. But by a 

result [ Let X and Y be metric spaces and f : X  Y. Then f  is continuous  

xn  x  f(xn)  f(x).] 

This implies that xn  x in N  T(xn)  T(x) in N  

In the next theorem, we convert the requirement of continuity into several more 

useful equivalent forms and show that the set of all continuous linear 
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transformations of N into N  can itself be made into a normed linear space in a 

natural way. 

Theorem: Let N and N  be normed linear spaces and T a linear transformation 

of N into N . Then the following conditions on T are equivalent to one another. 

(1) T is continuous 

(2) T is continuous at the origin, in the sense that xn  0  T(xn)  0. 

(3)  a real number K  0 with the property that || T(x) ||  K || x || for every            

x  N. 

(4) If S = { x : || x ||  1} is the closed unit sphere in N, then the image T(S) is a 

bounded set in N . 

Proof: (i)  (ii)  If T is continuous, then by the property of linear 

transformation we have T(0) = 0 and it is certainly continuous at the origin. For 

if T is cont and {xn} is a sequence of points in N such that xn  0, then by the 

continuity of T, we have 

   xn  0  T(xn)  T(0) 

     T(xn)  0 since T(0) = 0. 

Conversely if T is continuous at the origin and {xn} is a sequence such that                

xn  x , then 

 xn  x  xn – x  0 

  T(xn – x)  T(0) = 0 [since T is continuous at the origin] 

  T(xn) – T(x)  0 

Hence  T is continuous 

(2)  (3) Suppose that T is continuous at the origin. We shall show that  a 

real number K  0 such that  || T(x) ||  K || x || for every x  N. 
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We shall prove this result by contradiction. So suppose  no such K. Therefore 

for each +ve integer n, we can find a vector xn s. that 

   || T(xn) || > n || xn || 

Which is equivalent to 

   
||||

||)(||

n

n

xn

xT
 > 1  or  || T 

|||| n

n

xn

x
|| > 1  (1) 

we put    yn = 
|||| n

n

xn

x
 

Then    || yn || = 
||||

||||

n

n

xn

x
 = 

n

1
  0  as  n  . 

If follows from it that yn   0. But from (1) T(yn)  0. So T is not continuous 

at the origin which is contradiction to our assumption. 

Conversely, suppose that  a real number K  0 with the property that || T(x) || 

 K || x || for every        x  N. if {xn} is a sequence converging to zero, then 

   xn  0  || xn ||  || 0 || = 0 

Therefore  || T(xn) ||  K || xn ||  0 

And hence T(xn)  0 which proves that T is continuous at the origin. 

(3)  (4) Suppose first that  a real no K  0 with the property that || T(x) ||  

K || x || for every   x  N. If S = {x : || x ||  1} is the closed unit sphere in N, 

then for all x, we have 

   || T(x) ||  K || x || 

    || T(x) ||  K  x  S. 

Hence T(S) is a bounded set in N . 
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Conversely suppose that S = {x : || x ||  1} is the closed unit sphere in N and 

T(S) is bounded in N . Then 

   || T(x) ||  K   x  S 

If x = 0, then T(x) = T(0) = 0 and therefore in this case we have clearly || T(x) || 

 K || x || .   If x  0, then 
|||| x

x
  S (||

|||| x

x
|| = 1) and therefore  || T

|||| x

x
 || 

 K 

   i.e. || T(x) ||  K || x || . 

Space of Bounded Linear Transformation 

Definition: A linear transformation T is said to be bounded if  a non – 

negative real number K  such that 

   || T(x) ||  K || x ||  x 

K is called bound for T. 

Remark: Thus according to the above theorem T is continuous iff it is 

bounded. 

From condition (4) of our theorem, we can define the norm of a continuous 

linear transformation as follows: 

Definition: Let T be a continuous linear transformation, then 

   || T || = sup { || T(x) || ; || x ||  1} 

is called the norm of T. 

Obviously norm of T is the smallest M for which || T(x) ||  M || x || holds for 

every 

   i.e. || T || = Inf {M ; || T(x)||  M || x || } 

Theorem: Let N and N  be normed linear spaces and let T be a linear 

transformation of N into N . Then the inverse T
-1

 exists and is continuous on its 

domain of definition iff  exists a constant m > 0 s. that 
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   m || x ||  || T(x) ||  x  N.    (1) 

Proof: Let (1) hold. To show that T
-1

 exists and is continuous Now T
-1

 exists 

iff  T is one – one. Let x1, x2  N. Then  

   T(x1) = T(x2)  T(x1) – T(x2) = 0  m || x1 – x2 

||  || T(x1 – x2) || = 0 

               T(x1 – x2) = 0                           

 || x1 – x2 || = 0 

               x1 – x2 = 0 by (1) 

               x1 = x2    

Hence T is one one and so T
1
 exists. Therefore to each y in the domain of T

-1
, 

 a x in N s. that 

T(x) = y  x = T
-1

(y)    (2) 

Hence (1) is equivalent to 

   m || T
-1

 y ||  || y ||  || T
-1

(y) ||  
m

1
 || y || 

    T
-1

 is bounded 

    T
-1

 is continuous (by the above theorem) 

conversely let T
-1

 exists and be continuous on its domain T[N]. Let x  N. 

Since T
1
 exists, there is an y  T[N] s. That 

   T
-1

(y) = x  T(x) = y     (3) 

Again since T
-1

 is continuous, it is bounded so that  a +ve constant K s. That 

   || T
-1

 y ||  K || y ||  || x ||  K || T(x) || by (3) 

    m || x ||  || T(x) || where m = 
K

1
 > 0 
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Theorem : Let N and N  be normed linear spaces and let T be a bounded linear 

transformation of N into N  : Put 

   a = sup { || T(x) ||; x  N, || x || = 1} 

   b = sup { || T(x) || / || x ||; x  N; x  0} 

   c = Inf { K; K  0, || T(x) ||  K || x ||  x  N} 

Then  

   || T || = a = b = c 

and  

   || T(x) ||  || T || || x ||  x   N. 

Proof: By definition of norm 

   || T || = sup { || T(x) ||; x  N, || x ||  1 } 

By definition of c, || T(x) ||  c || x ||  x  N 

and if || x ||  1, then || T(x) ||  c  x  N 

and so sup { || T(x) ||; x  N, || x ||  1 }  c 

i.e.    || T ||  c . 

Also by definition of b and c, it is clear that c  b [ || T ||  c   b]. Again if               

x  0, 

Then   || T(x) || / ||x || = || T 
|||| x

x
||  

and 
|||| x

x
 has norm 1. Hence we conclude from the definitions of b and a that b 

 a. But it is evident that 
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a = sup { || T(x) ||; x  N; || x || = 1 }  sup { || T(x) ||; x  N; || x ||  1 } 

          a  || T || . 

Thus we have shown that 

   || T ||  c  b  a  || T || 

    || T || = a = b = c. 

Finally definition of b shows that 

   
||||

||)(||

x

xT
  sup {

||||

||)(||

x

xT
; x  N, x  0 } 

      = b = || T || 

                                 || T(x) ||  || T || || x || 

Remark :  Now we shall denote the set of all continuous (or bounded) linear 

transformation of N into N  by B(N, N ) [ where letter B stands for bounded ]. 

Theorem : If N and N  are normed linear spaces, then the set B(N, N ) of all 

continuous linear transformation of N into N  is itself a normed linear space 

with respect to the pointwise linear operations and the norm defined by 

    

|| T || = sup { || T(x) ||; || x ||  1 } 

Further if N  is a Banach space, then B(N, N ) is also a Banach space. 

Proof: Let B(N, N ) be the set of bounded linear transformation on N into N . 

Let T1, T2  B(N, N ). Define T1 + T2 by 

   (T1 + T2) (x) = T1(x) + T2(x) 

and T by 

  (  T) (x) =  T(x)   x  N. 

It can seen that under these operations of addition and scalar multiplication, 

B(N, N ) is a vector space since we know that the set S of all linear 
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transformation from a linear space into another linear space is itself a linear 

space w.r.t. to the pointwise linear operations. Therefore in order to prove that 

B(N, N ) is a linear space, it is sufficient to show that B(N, N ) is a subspace of 

S. Let T1,                    T2  B(N, N ). Then T1 and T2 are bounded, so  real 

numbers K1  0 and K2  0 s. that 

   || T1(x) ||  K1 || x || and || T2(x) ||  K2 || x || 

for all x N.  

If ,  are any two scalars, then 

 

   || (  T1 +  T2) (x) || = || ( T1) (x) + ( T2) (x) || 

              = ||  T1(x) +  T2(x) || 

                          |  ||| T1(x) || + |  |||T2(x) || 

               |  | K1 || x || + |  | K2 || x || 

              = [ |  | K1 + |  | K2 ] || x || 

Thus  T1 +  T2 is bounded and so 

    T1 +  T2  B(N, N ) 

This proves that B(N, N ) is a linear subspace of S. 

Now we prove that B(N, N ) is a normed linear space with respect to the norm 

defined by 

   || T || = sup { || T(x) ||; || x ||  1 ] 

which is clearly non – negative. We have 

(i)   || T || = 0  sup { || T(x) ||; ||x ||  1 } = 0 

                         sup { 
||||

||)(||

x

xT
, x  0 } = 0 

    
||||

||)(||

x

xT
 = 0  x  N, x  0 

    || T(x) || = 0  

    T(x) = 0  T = 0 

(ii)    ||  T || = sup { || (  T) (x) ||; || x ||  1 } 
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    = sup { ||  . T(x) ||; || x ||  1 } 

    = sup { |  | || T(x) ||; || x ||  1 } 

    = |  | . sup { || T(x) ||; || x ||  1 } 

(iii)   || T1 + T2 || = sup { || (T1 + T2) (x) ||; || x ||  1 } 

          = sup { || T1(x) + T2(x) }; || x ||  1 } 

           sup { || T1(x) ||; || x ||  1 } 

             + sup { || T2(x) ||; || x ||  1 } 

          = || T1 || + || T2 || 

Hence B(N, N ) is normed linear space. It remains to prove that if N  is a 

Banach space, then B(N, N ) is also a Banach space. For if; suppose N  is a 

Banach space. Then N  is complete. It sufficies to show that B(N, N ) is 

complete. Let {Tn} be an arbitrary cauchy sequence in B(N, N ), then for any x 

 N, 

   || Tm(x) – Tn(x) || = || (Tm – Tn) (x) || 

         || Tm – Tn || || x ||    (1) 

      [ || T(x) ||  || T || || x|| ] 

This shows that {Tn(x)} is a cauchy sequence in N . Since N  is complete,  

T(x) in N  such that Tn(x)  T(x)  x  N i.e. 

T(x) = 
n
lim Tn(x). Now T defines a mapping T from N to N . 

It is obvious that T is linear.    For 

 

   T(x + y) = 
n
lim Tn(x + y) 

      = 
n
lim Tn(x) + 

n
lim Tn(y) 

      = T(x) + T(y)  

and   T( . x) = 
n
lim Tn(  x) 
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     = 
n
lim {  . Tn(x) } 

     =  . 
n
lim {Tn(x) } =  . T(x) 

Now {Tn} being a cauchy sequence, 
n,m

lim { || Tn – Tm || } = 0 and since 

   | ( || Tn || - || Tm || ) |  || Tn – Tm || 

it follows that 

   
n,m

lim | ( || Tn || - || Tm || ) | = 0 

Therefore [ || Tn || ] is convergent and hence bounded i.e.  a real no K s. That 

   || Tn ||  K,  n = 1, 2,…… 

and therefore  || Tn(x) ||  || Tn || || x ||  K || x ||  n 

Thus    || T(x) || = 
n,m

lim || Tn(x) ||  K || x || 

    T is bounded 

Hence T  B(N, N ). If we prove that Tn  T. Then we have that B(N, N ) is 

complete.  For let            > 0, choose n0 so that  

   || Tm – Tn || < 
2

 if m, n > n0. Then 

   || Tm(x) – Tn(x) || < 
2

 || x || for m, n > n0, x  N. 

Letting n  , we get 

   || Tm(x) – T(x) || < 
2

 || x ||  for m > n0, x  N 

since   T(x) = 
n

lim
 Tn(x). 

This implies that for m > n0 and || x ||  1, we have 

 || T(x) – Tn(x) || = || T(x) – Tm(x) + Tm(x ) – Tn(x) || 

     || T(x) – Tm(x) || + || Tm(x) – Tn(x) || 

     || T(x) – Tm(x) || + || Tm – Tn || || x ||  

     || T(x) – Tm(x) || + || Tm – Tn || [ || x ||  1] 

    < 
2

 + 
2

 =  
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This shows that 

   || T – Tn || = sup { || T(x) – Tn(x) ||; || x ||  1 }<  

      

Hence Tn  T . 

Thus we have proved that B(N, N ) is a complete normed linear space. 

Note: By the definition of bounded linear transformation, it is clear that a 

continuous linear transformation is bounded linear transformation and 

conversely. 

 

Also if N and N  are normed linear spaces, the space L(N, N ) or B(N, N ) is 

also called space of all continuous linear transformation. In notation if N = N , 

the space is also denoted as B(N). 

 

Definition:  A continuous linear transformation of a normed linear space into 

itself is called operator on N. The normed linear space consisting of all linear 

operators on N is denoted by B(N) instead of B(N, N ). The above theorem 

asserts that if N is a Banach space.  B(N) is also a Banach Space.  

 

Definition: An algebra is a linear space whose vectors can be multiplied in 

such a way that  

(i) x (y z) = (x y) z 

(ii) x (y + z ) = x y + y z and (x + y ) z = x z  + y z 

(iii) (x y) = (  x) y = x (  y) for all scalars . 

Thus an algebra is a linear space that is also a ring in which (iii) holds. 

If the linear operators T1 and T2 are multiplied in accordance with the formula 

   (T1 T2) (x) = T1 (T2(x))  x  N 

Then ß (N) is a algebra in which multiplication is related to the norm by  

   || T T  ||  || T || || T  || 

This relation is proved by the following computation 

   || T T  || = sup { || (T T )(x) ||; || x ||  1 } 

     = sup [ || T(T (x)) ||; || x ||  1 } 

      sup { || T || || T (x) ||; || x ||  1 } 

     = || T || { sup || T (x) ||; || x ||  1 } 

     = || T || || T  ||      (1) 
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Since we know that addition and scalar multiplication are joining continuous in 

normed linear space, they are also jointly continuous in ß (N). Also 

multiplication is continuous, since 

   If Tn  T in B(N) and Tn   T  in B(N) 

Then    Tn Tn   T T  

Since 

   || Tn Tn  - T T  || = || Tn (Tn  - T ) + (Tn – T) T  || 

        || Tn || || Tn  - T  || + || Tn – T || || T  || 

But (Tn) being convergent sequence in ß (N), it must be bounded so  M such 

that 

  || Tn Tn  - T T  ||  M || Tn  -T  || + || T  ||. || Tn – T ||  0 as n  

. 

 

We also remark that when N  { 0 } then the identity transformation I is an 

identity for the algebra ß(N). In this case we clearly have 

 

   || I || = 1 

for    || I || = sup { || I(x) ||, || x || = 1 } 

          = sup { || x ||; || x || = 1 } 

          = 1. 

Definition: Let N and N  be normed linear spaces. A one to one linear 

transformation T of N into N  such that || T(x) || = || x || for every x in N is 

called isometric isomorphism. N is said to be isometrically isomorphic to N  if 

 an isometric isomorphism of N onto N . 

 

Theorem:  If M is a closed linear subspace of a normed linear space N and if T 

: N  N/M defined by T(x) = x + M. Show that T is continuous linear 

transformation for which || T ||  1. 

 

Proof:  Since M is closed, N/M is a normed linear space [since every closed 

subspace of normed space is normed] with the norm of a coset x + M in N/M 

defined by 

 

   || x + M || = Inf { || x + m ||; m  M } 

   T(x1 + x2) = x1 + x2 + M 

        = x1 + M + x2 + M  [definition of N/M]  
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            = T(x1) + T(x2) 

 T(  x ) =  x + M = (x + M) =  T. 

   T is linear. 

 || T x || = || x + M || = Inf { || x + m ||; m  M } 

   Inf { || x || + || m ||; m  M} 

   Inf || x || + Inf || m || ; m  M 

  = || x || + 0. 

[since M is subspace of N, 0 is the element of M which has smallest norm 

namely zero] 

Then 

 

   || T x ||  || x ||  n  N 

    T is bounded 

Since    

 
0

sup

x ||||

||||

x

Tx
  1  || T x ||  || x ||  1  

0

sup

x
{ || T(x) ||; || x ||  1} 

          || x ||  1 

         || T ||  1. 

Theorem:  Let E and F be two normed linear spaces. Then they are 

topologically isomorphic iff   m, M and a linear mapping T : E  F which is 

one-one and onto such that  

   m || x ||  || T x ||  M || x ||  x  E 

Proof: Let E and F be top. isomorphic, then by definition  linear mapping T : 

E  F such that T is cont, bijective and T
-1

 exists and is also continuous. Then 

by using theorem on continuous of linear transformation  M such that 

   || T x ||  M || x ||  x  E 

Also by the last result,  m > 0 such that 
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   m || x ||  || T x ||  M || x || 

Since T
-1

 exists and is continuous Then we have linear one – one onto mapping 

such that  m > 0, M > 0 such that 

   m || x ||  || T x ||  M || x ||  x  E 

conversely if  T : E  F such that  T is one – one onto and  m , M s. That 

   m || x ||  || T(x) ||  M || x ||  x  E. 

Since    || T(x ) ||  M || x || 

Hence T is bounded 

By the theorem on continuity (or bounded)   T is continuous.  

 

Now From    m || x ||  || T(x) || 

T is 1 – 1 and onto  T
-1

 exists.   

  T
-1

 is continuous.   Hence T is bijective, cont and T
-1

 exists and is 

continuous or [ T is open]  

  E and F are topologically isomorphic. 

Remark:  On a finite dimensional space 
n
 or C

n
, all the norms are equivalent 

in the sense that they define same topology up to top. isomorphism. 

Definition: Let E and F be normed linear spaces. Then E and F are said to be 

equivalent as normed spaces iff  m > 0, M > 0 such that 

 

   m || x ||  || T x ||  M || x ||  x  E. 

 

Conjugate of an Operator 

Let N be a normed linear space and T a continuous linear operator on N. Then 

for any functional f  N*, the composite mapping (foT) is a continuous linear 

functional since 

 

  (foT) (  x +  y) = f(T(  x +  y) ; x , y  N 

        = f( . T(x) +  (T(y)) 

                   =  f(T(x)) +  f(T(y)) 

        =  (foT) (x) +  (f oT) (y) 

Moreover since f and T both are continuous, foT is also continuous Hence      

foT  N*.  
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Define a mapping 

 

   T* : N*  N* 

by 

    T*(f) = foT  f  N*. 

This mapping is called the conjugate of the operator T. 

Also we note that 

 

   (T*(f)) (x) = f(T(x))   x  N. 

we assert that T* is linear, for 

   (T*(  f +  g) (x) = (  f +  g) (T(x)) 

          =  f(T(x)) +  . g(T(x)) 

          =  (f T) (x) +  (g T) (x) 

          = (T*(f)) (x) +  (T*(g)) (x) 

          = (  (T*(f) +  (T*(g)) (x) 

T* is also bounded (continuous) and hence 

   || T* || = sup { || T* f ||; || f ||  1 } 

             = sup { | T*(f) (x) |; || f ||  1 and || x ||  1 } 

             = sup { | f(T(x)) |; || f ||  1, || x ||  1 } 

              sup { || f || || T || || x ||; || f ||  1, || x ||  1 } 

              || T ||      (1) 

Since N is a normed linear space, for a non – zero vector x in  N, there exists a 

functional f on N such that 

 

 || f || = 1 and f(T(x)) = || T(x) || [|| f || = 1 and f(x) = || x ||] 

Therefore 

   || T || = sup { || T x || ; || x ||  1 } 

            = sup { f(T(x)) ; || x ||  1 and || f ||  1 } 
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             sup {f(T(x)) ; || x ||  1 and || f ||  1 } 

            = sup { | T*(f)(x) | ; || f ||  1 and || x ||  1 } 

            = sup { || T* f || || x || ; || f ||  1 and || x ||  1 } 

             sup { || T* f || ; || f ||  1 } 

            = || T* ||       (2) 

From (1) and (2), it follows that 

   || T || = || T* ||      (3) 

consider the mapping 

    : ß(N)  ß(N*) 

defined by  

   (T) = T*   T  ß(N) 

Let T1, T2  ß(N). Then 

   (  T1 +  T2) = (  T1 +  T2)* 

But for all f  N* and x  N, we have 

   [(  T1 +  T2)* (f)] (x) = f [(  T1 +  T2 ) (x)] 

       = f [  T1(x) +  T2(x) ] 

       =  f(T1(x)) +  f (T2(x)) 

       =  (f T1) (x) +  (f T2) (x) 

       = (T1*(f)) (x) +  (T2*(f))(x) 

       = (  [T1*(f)] +  [T2*(f)]) (x) 

       = {[  T1* +  T2*] (f)} (x) 

Therefore, we have 

    (  T1 +  T2) = (  T1 +  T2)* 

      =  T1* +  T2* 

      =  (T1) +  (T2)  

which shows that  in linear. 

Also  is one to one, since 
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   (T1) = (T2)  T1* = T2* 

             T1*(f) = T2*(f)  f  N* 

             [T1*(f)] (x) = [T2*(f)] (x) 

             f(T1(x)) = f(T2(x)) 

             (T1 – T2) (x) = 0  x  N 

             T1 – T2 = 0   T1 = T2 

Moreover 

   || (T) || = || T* || = || T || 

Hence  is an isometric isomorphism and it preserves norm also. 

If f  N* and x  N, then 

 

   [(T1 T2)* (f)] (x) = f (T1 T2) (x) 

        = f (T1 (T2(x)) 

        = (f T1) (T2(x)) 

        = (T1*(f)) (T2(x)) 

        = T2* (T1*(f)) (x) 

        = [(T2* T1*) (f)] (x) 

i.e. 

   (T1 T2)* = T2* T1*  

and if I is an identity operator, then 

   [ I*(f)] (x) = f [I(x) ] = f(x) 

         = (I(f)) (x) 

         I* = I 

Thus we have proved the following: 
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Theorem: If T is an operator on a normed linear space N, Then its conjugate 

T* is defined by equation 

   [T*(f)] (x) = f[T(x)] 

is an operator on N* and the mapping T  T* is an isometric isomorphism of 

ß(N) into ß(N*) which reverses the product and preserves the identity 

transformation. 

 

Theorem: A non empty subset X of a normed linear space N is bounded  

f(X) is a bounded set of numbers for each f in N*. 

 

Proof: Since | f(x) |  || f || || x ||, it follows that if X is bounded, then f(X) is 

also bounded for f. 

To prove the converse, we write X = { xi }. We now use natural imbedding [x 

 Fn] to map X to the subset { F
ix } of N**.   The assumption that f(X) = { 

f(xi)} is bounded for each f implies that                  { F
ix (f)} is bounded for 

each f. Moreover since N* is complete. The uniform boundedness theorem 

shows that{F
ix } is a bounded subset of N**. 

Since natural imbedding preserves norms, therefore X is evidently a bounded 

subset of N. 

Conjugate Spaces  

We know that the spaces R and C are real and complex complete normed linear 

spaces.  If N is an arbitrary normed linear space, then the set B(N, R) or B(N, 

C) of all continuous linear transformations of N in R or C is a normed linear 

space.  This space is called the conjugate space of N and is denoted by N*.  

The elements of N* are called continuous linear functionals or simply 

functionals.  The norm of a function f N* is defined as  

  ||f|| = sup {|f(x)| ; ||x||  1} 

Since R and C are Banach spaces, it follows that B(N, R) and B(N, C) are also 

Banach spaces.  Thus N* is also a Banach space.  

Hahn-Banach Theorem and its applications  

Hahn-Banach Theorem is a strong tool for functional analysis.  In fact the 

theory of conjugate spaces rest on the Hahn-Banach Theorem which asserts 

that any linear functional on a linear subspace of a normed linear space can be 

extended linearly and continuously to the whole space without increasing its 

norm.    

Statement of Hahn Banach Theorem : Let M be a linear subspace of a 

normed linear space N and let f be a functional defined on M.  Then f can be 

extended to a functional f0 defined on the whole space N such that  
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  f0(x) = f(x)  x M and ||f0|| = ||f|| 

Proof :- Let f be a functional defined on a subspace M of a real normed linear 

space N and let x0 be any vector of N which is not in M.  Consider the set {M + 

tx0} of elements x + tx0 where x M and t is an arbitrary real number.  Then 

{M + tx0} is obviously a linear manifold of N.  Every element of {M + tx0} is 

uniquely representable in the form x + tx0, for if 0 there exists two 

representations y1 = x1 + t1x0 and y2 = x2 + t2 x0, we can suppose that t1  t2 for 

0 otherwise x1+ t1 x0 = x2 + t2 x0 would imply x1 = x2 and the representation 

will be unique.  Then  

  x1  x2 = (t2  t1) x0 

  x0 =
12

21

tt

xx
 

But this is impossible since x0  M and x1, x2 M.  Hence t1 = t2 and Thus x1 = 

x2 which proves the uniqueness. 

 For any two elements, x1, x2 M, we have 

  f(x1)  f(x2) = f(x1 x2) 

            |f(x1  x2)| 

            ||f||. ||x1 x2|| 

           = ||f||. {||x1 + x0 (x2 + x0)||} 

            ||f|| {||x1 + x0|| + ||x2 + x0||} 

so that 

  f(x1)  ||f||. ||x1 + x0||  f(x2) + ||f||. ||x2 + x0|| 

Since x1 and x2 are arbitrary in M,  

We have 

  
Mx

sup{f(x)  ||f||.||x+x0||}  
Mx

Inf {f(x) + ||f||. ||x+x0||} 

Thus there exists a real no  which satisfies the inequality 

 
Mx

sup{f(x)  ||f||. ||x+x0||}    
Mx

Inf {f(x) + ||f||.||x+x0||}  (1) 
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Now let y be an arbitrary element of {M + t x0}.  Then y is uniquely 

expressible in the form y = x + tx0.  We define a function  on {M + tx0} by  

  (y) = f(x)  t   y {M + tx0} 

where  is a fixed real number satisfying (1).  Obviously  coincides with f in 

M and the linearity of f implies that  is linear.  We shall show that  in 

bounded and has the same norm as f(x).  We distinguish two cases : 

(i) t > 0. Since 
t

x
M, the relation (1) yields  

(y) = f(x) t  

        = t α
t

x
f  

         t 0x
t

x
.||f||      

          = ||f||. ||x + tx0|| 

          = ||f|| . ||y||     …(2) 

(ii) t < 0, In this case (i) yields 

  f 0x
t

x
.||f||α

t

x
 

      = ||y||.||f||.
|t|

1
 

      = 
t

1
. ||f|| . ||y|| 

and therefore         (y)  = f(x) t  

      = t α
t

x
f  

       t .
t

1
||f|| . ||y|| 

      = ||f|| . ||y||     …(3) 
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Thus from (2) and (3), it follows that  

  (y)  ||f|| . ||y||  y {M + tx0} 

Replacing y by y in (2), we have 

  (y)  ||f|| . ||y||  y {M + tx0} 

Therefore  | (y)|  ||f|| . ||y||   y  {M + tx0} 

and therefore || ||  ||f||      …(4) 

But  being an extension of f from M to {M + tx0} 

we have || ||  ||f||      …(5) 

Hence from (4) and (5) 

  || || = ||f|| 

Now if the elements of the set N  M are arranged in transfinite sequence x0, 

x1, x2,…, xk,…, we extend the functional successively to the spaces  

  {M + tx0} = M0 , {M0 + tx1} = M1 and so on since the norm 

remains the same at each step, continuing the above process, we arrive at a 

functional f0 which satisfies both the conditions, namely 

  f0(x) = f(x)  x M and ||f0|| = ||f||  

This completes the proof of the theorem. 

Complex Form of Hahn Banach Theorem  

When N is complex and f is a complex valued function defined on M, let f1 and 

f2 be the real and imaginary parts of f.  Thus for each x M, we have 

  f(x) = f1(x) + i f2(x) 

and  

  |f1(x)|, |f2(x)|  |f(x)|  ||f||. ||x|| 

we claim that f1 and f2 are real valued linear functionals.  Let R and 

consider 

   f(x) = f1(x) + i  f2(x)    …(1) 

Since f is a linear functional, (1) must equal  
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  f1( x) = f1(x) and f2( x) = f2(x) 

In a similar fashion, we can show that sums are also preserved.  

Now consider  

  i(f1(x) + if2(x)) = if(x) = f(ix) = f1 (ix) + if2(ix)  

Equating real and imaginary parts, we have 

  f1(ix) = f2(x) 

and  f2(ix) = f1(x) 

Thus f(x) = f1(x)  if1(ix)       

         …(2) 

Now by the above proved theorem, there exists a function F1 defined on the 

whole space extending f1 such that  

  ||F1|| = ||f1|| and F1(x) = f1(x)  x M 

we now define  

  F(x) = F1(x)  iF1(ix)     …(3) 

We now assert that F extends f.  To prove this let x M and consider (3). Since 

F1 extends f1, so  

  F1(x) = f1(x) and F1(ix) = f1(ix) = f2(x) 

Thus 

  F(x) = f1(x) + if2(x) = f(x) 

and hence F extends f. 

Moreover by (3) 

  F(ix)  = F1(ix)  iF1 (i
2
x) 

            =  F1(ix)  iF1( x) 

            = F1(ix) + i F1(x) 

   iF(x) = i[F1(x)  iF1(ix)] 

            = iF1(x) + F1(ix) 
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we see that F(ix) = iF(x)  

and therefore is a complex linear functional. 

Put F(x) = re
i

, then  

  |F(x)| = |r e
i

| = r |e
i

| 

           = r = e
i

. F(x) 

Thus F(e
i

x) is a purely real quantity which implies that imaginary part of 

F(e
i

x) i.e.  

  F1(i e
i

 x) must be zero. 

Thus   F(e
i

x) = F1(e
i

 x) 

and we have 

  |F(x)| = |F1(e
i

x)|  ||F1||. ||x||. |e
i

| 

     = ||f1||. ||x|| 

      = ||f|| . ||x|| 

which gives ||F||  ||f|| 

Moreover F being an extension of f, we have 

  ||F||  ||f|| 

Hence ||F|| = ||f|| and the proof is complete.  

Applications of Hahn-Banach Theorem  

Theorem 1:- In N is a normed linear space and x0 is a non-zero vector in N, 

then there exists a functional f0 in N* such that f0(x0) = ||x0|| and  

  ||f0|| = 1.  In particular if x  y (x, y N), there exists a vector               

f N* such that f(x)  f(y). 

Proof :- Consider the subspace 

  M = {  x0} 
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consisting of all scalar multiplies of x0 and consider the functional f defined on 

M as follows :  

  f : M F, f( x0) = . ||x0|| 

clearly, f is a linear functional with the property 

  f(x0) = ||x0|| 

  |f( x0) = | |. ||x0|| 

              = || x0||     …(1) 

  ||f|| = sup {|f( x0)| ; || x0||  1} 

       = sup {|| x0|| ; || x||  1} 

        1 

But if there were a real constant k such that k < 1 and |f( x0)|  k || x0||  x0 

M.  This will contradict the equality defined by (1). Thus ||f|| = 1.  We have 

thus established that f is a bounded linear functional defined on the subspace M 

with norm 1.  Now by Hahn-Banach Theorem, the functional f can extended to 

a functional f0 in N* such that  

  f0(x0) = f(x0) = ||x0|| and ||f0|| = ||f|| = 1 

This completes the proof. 

In the particular case since x  y, x  y  0 and so by the above, there exists an 

f N* such that  

  f(x y) = ||x y||  0 

  f(x)  f(y)  0 

  f(x)  f(y). 

Remark : (1) This result shows that N* separates the vectors of N. 

(2) This result also shows that Hahn-Banach Theorem guarantee that any 

normed linear space has rich supply of functionals.   

Theorem 2 :- Let M be a closed linear subspace of a normed linear space N 

and let  be the natural mapping (homomorphism) of N onto N/M defined by 

(x) = x + M.  Show that  is a continuous (or bounded) linear transformation 

for which  
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  ||  ||  1. 

Proof :- Since M is closed and N/M is a normed linear space with the norm of 

a coset x + M in N/M defined by  

  || x + M|| = Inf {||x + m|| ; m  M} 

 is linear :- Let x, y be any two elements of N and ,  be any scalars.  Then  

  ( x + y) = ( x + y) + M = ( x + M) + ( y + M) 

    = (x + M) +  (y + M) 

    =  (x) + (y) 

  is linear. 

 is continuous :- || (x)|| = ||x + M|| 

     = Inf {||x +m||; m M} 

      ||x + m||  m M 

In particular for m = 0, we have 

  || (x)||  ||x|| = 1.  ||x||  x N 

It follows that  is bounded by the bound 1 and consequently  is  continuous.  

Further 

  || || = sup {|| (x)|| ; x N; ||x||  1} 

         sup {||x|| ; x N; ||x||  1} 

         1 

Thus || ||  1. 

Theorem 3:- Let M be a closed linear subspace a normed linear space N and 

let x0 be a vector not in M, then there exists a functional F in N* such that  

  F(M) = {0} and F(x0)  0 

Proof :- Consider the natural map  : N  N/M defined by (x) = x + M.  As 

shown in the last theorem  is a continuous linear transformation and if m M, 

then (m) = m + M = 0, where 0 denotes the zero vector M in N/M. 
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In other words, (M) = {0} 

Also since x0  M, we have  

  (x0) = x0 + M  0. 

Hence by  theorem 1, there exists a functional f  (N/M)* such that  

  f(x0 + M) = ||x0 + M||  0 

We now define F by F(x) = f ( (x)). 

Then F is a linear functional on N.  With the desired properties as shown below 

: 

F is linear :- 

  F( x + y) = f( ( x + y)) = f( x + y + M) 

   = f( (x +M) + (y + M)) 

   = f(x + M) +  f(y + M) 

   =  f(  (x)) +  f( (y)) 

   = . F(x) + . F(y) 

F is bounded :- 

     |F(x)| = |f( (x)| 

    ||f|| . || (x)|| 

    ||f|| . || || . ||x|| 

    ||f|| . ||x|| 

since  ||  ||  1 

Since f is bounded (being a functional).  It follows from the above inequality 

that F is bounded.  Thus F is a functional on N i.e. F N*.  Further if m M, 

then  

  F(m) = f( (m)) = f(0) = 0 

Thus  F(M) = 0  m M 

and   F(x0) = f( (x0)) = f(x0 + M)  0 
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Theorem 4 :- Let M be a closed linear subspace of a normed linear space N 

and let x0 be a vector not in M.  If d is the distance from x0 to M, show that 

there exists a functional f0 N* such that  

  f0(M) = {0}, f0(x0) = d and ||f0|| = 1. 

Proof :- Since by definition 

  d = Inf {||x0 + m|| ; m M} 

Since M is closed and x0  M   d > 0. 

Now consider the subspace 

  M0 = {x + x0 ; x M and  real} 

Spanned by M and x0.  Since x0  M, the representation of each vector y in M0 

in the form y = x +  x0 is unique.  For if there exists two scalars 1 and 2 and 

vectors x1 and x2 in M such that  

  y = 1 x0 + x1 and y = 2 x0 + x2 

  ( 1  2) x0 = x2  x1 

  x0 = 
21

12

αα

xx
 

  x0 M which is a contradiction,  since x0  M by our 

assumption.  So each y in M0 is unique.  Define the map f : M0  R by 

  f(y) = d 

where y = x + x0 and d as in hypothesis.  Because of the uniqueness of y, the 

mapping f is well defined.  Also f is linear on M0, and  

  f(x0) = f(0 + 1. x0) = 1. d = d and if m M,  

then   f(m) = f(m + 0. x0) = 0. d = 0    

so that   f(M) = {0}. 

We now prove that ||f|| = 1. 

Since 

  ||f|| = 0yMy;
||y||

|)y(f|
sup 0

1||y||
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       = sup Rα,Mx;
||xαx||

|)xαx(f|

0

0  

        = sup 0α,Rα;Mx;
||xαx||

|dα|

0

 

        = sup 0α,Rα,Mx;

α

x
x

d

0

 

        = d sup M
α

x
z;

||zx||

1

0

 

        = d[Inf {|| x0 z||; z M}]
1
 

        = d 
d

1
 

        = 1. 

Thus f is a linear functional on M0 such that  

  f(M) = {0}, f(x0) = d and ||f|| = 1.   …( ) 

Hence by Hahn Banach Theorem, there exists a functional f0 on the whole 

space N such that  

  f(y) = f0(y)  y M0 and ||f|| = ||f0|| 

Thus from ( ) 

  f0(M) = {0}, f0(x0) = d and ||f0|| = 1.  

 

Riesz – Representation Theorem for Bounded Linear 

Functionals on L
p 

Let F be a bounded linear function on L
p
, 1  p < . Then there is a function g 

in L
q
  such that 

   F(f) = gf ,  f  Lp is arbitrary. 
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Proof: Let F be a bounded linear functional on L
p
, 1  p < . We put 

   S(x) = 
1xSfor0

Sx0for1
  

and show that 

   (S) = F( S(x)) 

is absolutely continuous For this purpose, let {(Si, ti)} be any finite collection 

of non – overlapping subintervals of [0, 1] of total length less than . 

Then  
n

i 1

| (ti) - (Si) | 

 = 
n

i ii

ii

St

St

1 )]()([

|)()(|
[ (ti) - (Si)] 

 = 
n

i 1

sgn [ (ti) - (Si)] [ (ti) - (Si)] 

 = F{
n

i 1

sgn [
it
(x) - 

iS (x)] [
it
(x) - 

iS (x)]} 

  || F || ||
n

i 1

sgn [
it
(x) - 

iS (x)] [
it
(x) - 

iS (x)]}|| 

 = || F || {
1

0
1

|
n

i

sgn [
it
(x) - 

iS (x)] [
it
(x) - 

iS (x)] |
p
 dx }

1/p
. 

If we take  = 
p

p

F ||||
, then it follows that total variation of  is less than  

over any finite collection of disjoint intervals of total length less than . Thus 

 is absolutely continuous 

Also we know that a function F is absolutely continuous iff it is indefinite 

integral. Therefore  an integrable function g such that 

 

   (S) = 
S

0
g  

Thus 

   F( S) = 
1

0
g S  where S = 

Sxif

Sxif

0

1
 

Since every step function on [0, 1] is [equal except at a finite number of pts to] 

to a suitable linear combination ci 
iS , we must have  

   F( ) = 
1

0
g       (*) 

For each step function  by the linearity of F and of the integral. 

Let f be any bounded measurable function on [0, 1] [hence Lebesgue 

integrable]. Then it follows that there is a sequence < n > of step functions 

which converges almost everywhere to f.  Since the sequence < | f - n |
p
 > is 
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uniformly bounded and tends to zero almost every where by the bounded 

convergence theorem [Let < fn > be a sequence of measurable functions 

defined on a set E os finite measure and suppose that there is a real number M 

s. that  

| fn(x) |  M for all n and all x . If f(x) = lim fn (x) for each x in E, then               

E

f = lim 
E

fn ] implies that || f - n ||p  0 Since F is bounded and  

   | F(f) – F( n) | = | F(f - n) |  || F || || f - n ||p 

we must have 

   F(f) = lim F( n)    (**) 

Since g n is always less than | g | times the uniform bound for the sequence   < 

n >, we have 

   f g = lim g n    (***) 

by the Lebesgue convergence theorem (Let g be integrable over E and let < fn 

> be a sequence of measurable functions such that | fn |  g on E and for almost 

all x in E we have f(x) = lim fn(x) 

Then    
E

f = lim 
E

fn. 

Consequently, we must have 

(*)   f g = F(f)  using (***) , (*), (**) 

for each bounded measurable function f. Since  

  | F(f) |  || F || || f ||p, 

we have g in Lq and || g ||q  || F || by the Lemma which states that “Let g be an 

integrable function on [0, 1] and suppose that there is a constant M such that | 

f g |  M || f ||p for all bounded measurable function f. then g is in L
q
 and || g 

||q  M” thus we have only to show that F(f) = f g for each f in L
p
. Let f be 

an arbitrary function in L
p
. Then there is for each  > 0, a step function  such 

that           || f -  ||p < . Since  is bounded , we have  

 

   F( ) =  g 



SIGNED MEASURE 111 

Hence 

   | F(f) - f g | = | F(f) – F( ) +  g - f g | 

      | F(f - ) | + | (  - f) g | 

      || F || || f -  ||p + || g ||q || f -  ||p 

     < [ || F || + || g ||q ] . 

Since  is an arbitrary number, we must have 

   F(f) = f g 

Riesz – Representation theorem for bounded linear functional on C[a, b]. 

Theorem: Let F  C*[a, b]. Then there exists a function g  B V [a, b] 

[bounded variation] such that for all f  C[a, b]. 

 

   F(f) = 
b

a
f(t) dg(t) 

Such that 

   || F || = V(g) 

where V(g) denotes the total variation of g(t). 

Proof: If we view C[a, b] as a subspace of B[a, b], by Hahn – Banach theorem, 

there exists a bounded linear functional F0 defined on all of B[a, b], defined 

extending F and such that || F0 || = || F ||. Define the characteristic function 

   t (x) = 
bxtfor0

txafor1
 

Obviously, for each such t, 

   t(x)  B[a, b] 

with F0 the extension of F, we now define a function g(t) by 

   F0[ t(x)] = g(t). 

We partition the interval [a, b] into  

   a = t0 < t1 < ……..< tn = b 

and consider the sum 

   
n

i 1

| g(ti) – g(ti-1) |. 

Putting 
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   i = sgn [g(ti) – g(ti-1)] = 
)]t(g)t(g[

|)t(g)t(g|

1ii

1ii
 

we obtain 

   
n

i 1

| g(ti) – g(ti-1) | = 
n

i 1

i [ g(ti) – g(ti-1) ] 

            =   
n

i 1

i [ F0 ( it
) – F0(

1it
 0) 

            = F0 [ 
n

i 1

 i ( it
-

1it
)] 

Therefore 

   
n

i 1

| g(ti) – g(ti-1) |  || F0 ||  ||
n

i 1

 i ( it
-

1it
) || 

            = || F || 

because  || F0 || = || F || and || 
n

i 1

 i ( it
-

1it
) || = 1 

Hence 

   | 
n

i 1

| g(ti) – g(ti-1) |  || F || 

that is g(t) is of bounded variation. 

Also it follows that 

 

   V(g)  || f ||      (1) 

Suppose now that f  C[a, b] and define 

   Zn(t) = 
n

i 1

 f(ti) [
it
(x) -

1it
(x)]  

Where the sequence < Zn – (t) > converges strongly to f(t) i.e. || Zn – f ||  0. 

Then the equality, 

   F0(Zn) = 
n

i 1

 f(ti) [ g(ti) – g(ti-1) ] 

Implies that 

  
n

lim
F(Zn) = 

n

lim n

i 1

 f(ti) [ g(ti) – g(ti-1) ] 

            = 
b

a
f(t) dg(t)  



SIGNED MEASURE 113 

 

by the definition of Riemann – Stieltjes integral.   Since the sequence < Zn(t) > 

converges strongly to f(t) i.e. || Zn – f ||  0 and F0 is a bounded (or 

continuous) linear functional and therefore cont, this implies that 

 

   F0(Zn)  F0(f) 

Therefore 

   F0(f) = 
b

a
f(t) dg(t). 

Now since f was an arbitrary continuous function on [a, b] and F0 must agree 

with F on C[a, b], we can write 

 

  F(f) = 
b

a
f(t) dg(t)  for any f  C[a, b]   (2) 

From (2), we have 

   | F(f) | = | 
b

a
f(t) dg(t) | 

              
],[

max

bat
| f(t) | . V(g). 

             = || f || V(g) 

             = || f || V(g)  for all f  C[a, b] 

Taking sup || f ||  1, we have 

   || F ||  V(g)      (3) 

From (1) and (3), it follows that  

   || F || = V(g).  
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Unit-III 

Second Conjugate Spaces   

 

We know that the conjugate space N* of a normed linear space N is itself a 

normed linear space.  As R and C are normed linear spaces, we can form the 

conjugate space (N*)* of N* and denote this by N** and call it the second 

conjugate or dual space of N.  The importance of N** lies in the fact that each 

vector x in N give rise to a functional Fx in N** and that there exists an 

isometric isomorphism of N into N** called the natural imbedding of N into 

N**. 

The following definition will be required to establish natural imbedding of N in 

N**. 

Definition :- Let N and N  be normed linear spaces.  Then a one to one linear 

transformation T : N N  of N in N  is called isometric isomorphism of N into 

N  if  

  ||Tx|| = ||x|| for every x in N. 

Further if there exists an, isometric isomorphism of N onto N , then N is said to 

isometrically isomorphic to N . 

 We now show that to each vector x N, there is a functional Fx in N**.  

Hence we prove the following result.  

Theorem :- Let N be an arbitrary normed linear space.  Then for each vector 

x N, the scalar valued function Fx defined by  

  Fx(f) = f(x)    f N* 

is a continuous linear functional in N** and the mapping x Fx is then an 

isometric isomorphism of N into N**. 

Proof :- Let N be an arbitrary normed linear space.  Let x be a vector in N, 

consider the scalar valued function  Fx defined by  

  Fx(f) = f(x)  f N*  

We assert that Fx is linear.  In fact 

  Fx( f + g) = ( f + g) (x) 
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           =  f(x) + g(x) = Fx(f) + Fx(g) 

Now computing the norm of Fx, we have 

  ||Fx|| = sup {|Fx(f)| ; ||f||  1} 

          = sup {|f(x)| ; ||f||  1} 

           sup {||f|| ||x|| ; ||f||  1} 

           ||x||      …(1) 

Therefore Fx is bounded and a continuous linear functional on N*.  [Fx is 

called the functional on N* induced by the vector x and is referred to as 

induced functional] 

Now define a mapping  : N N** 

by  (x) = Fx    x N.  

Clearly  is one to one, since 

  (x) = (y)  Fx = Fy 

  Fx(f) = Fy(f)  f N* 

 f(x) = f(y) 

 f(x y) = 0    x y = 0    x = y. 

Let x, y N, then for all scalars  and , 

  ( x + y) = F x+ y 

If f N* then  

  F x+ y(f) = f( x+ y) 

     = f(x) + f(y) 

     =  Fx(f) + (Fy(f) 

     = ( Fx) (f) + ( Fy) (f) 

     = (  Fx +  Fy) (f) 

     =  Fx + BFy 
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Thus 

  F x+ y =  Fx + Fy  

and hence  

  ( x + y) =  Fx +  Fy =  (x) + (y) 

which shows that  is linear 

Moreover by (1) 

  || (x)|| = ||Fx||  ||x||     …(2) 

Also we know that if x is a non-zero vector in N, then there exists a functional 

f0 in N* such that f0(x) = ||x|| and  ||f0|| = 1.   So 

  || x || = f0(x)  sup {|f0(x)| ; f0 N* and ||f0|| = 1} 

           = sup{|Fx(f0)| ; ||f0|| = 1 } 

           = || (x) ||     …(3) 

   || x ||  || (x) || 

Thus from (2) and (3) 

  || (x)|| = ||x||  x N. 

   is an isometry.  

It follows therefore that x Fx is an isometric isomorphism of N into N**. 

Remark :- This isometric isomorphism is called the natural imbedding of N 

into N**, for we may regard N as a part‟ of N** without altering any of its 

structure as a normed linear space and we write 

  N  N** . 

Reflexive Spaces  

Definition :- A normed linear space N is said to be reflexive if N = N** 

The space lp and lq for 1 < p <  are reflexive since lp
*
 = lq   

  *
q

**
p ll  = lp. 



SIGNED MEASURE 117 

Remark :- Every reflexive space is a Banach space since N** is a complete 

space.  But a Banach space may be non-reflexive space for ex. C[0, 1] is a 

Banach space but it is not reflexive.  

Example :- n
q

n
p l)*l(  

  n
1

nnn
1 l)*l(,l)*l(  

where 

  

p/1
n

1

p
in21

n
p |x|||x||),x,...,x,x(xl  

  
n

1
i

n
1ii

n
1 |x|||x||;)x(xl  

  
ni1

n
1ii

n max||x||;)x(x{l  |xi| } 

Solution :- Let L be the linear space of n triples x = (x1, x2,…, xn). 

If {e1, e2,…, en} is a natural basis of L 

  [e1 = (1, 0, 0,….) e2 = (0, 1,…) e3 = (0, 0, 1,…)] 

Then x = x1e1 + x2e2 +…+ xnen 

If f is any linear functional on L i.e. A scalar valued linear function  

  f(x) = f(x1e1 +…+ xnen) 

         = f(x1e1) +…+ f(xn en) 

  f(x) = x1 f(e1) +…+ xn f(en) 

where xi s are scalars. 

Put f(e1) = y1…, f(en) = yn, then  

(y1,…, yn) is an n-tuples of scalars.  Thus 

  f(x) = 
n

1i
ii yx   x = 

n
1i )x( L. 

is a linear functional  
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since f(x + x )  = 
n

1

(xi + xi ) yi 

  = 
n

1

(xiyi + xi yi) 

  = 
n

1

xi yi + 
n

1

xi  yi 

  = f(x) + f(x ) 

Similarly f( x) = 
n

1

 xiyi =  
n

1

xi yi = f(x)        scalar. 

Thus we have a 1 1, onto mapping defined by  

  y = (y1, y2,…, yn)  F 

where   f  L*, y L 

Thus algebraically L  = L 

By defining a suitable norm, say the norm 

  ||x|| = 

p/1
n

1

p |x|
i

on L to make it lp
n
 space, the L  space of all 

continuous functionals is equal to *)l( n
p , where the norm of f is given by  

  ||f|| = Inf {k ; k  0 and |f(x)|  k ||x||}      x lp
n
. 

It is sufficient to show that what norm of y = (y1,…, yn) makes the mapping 

y f an isometric isomorphism]. 

Case I :- when 1 < p < , 

Then we can show that n
q

n
p l)*l(  

  ||x|| = 

p/1
n

1
i |x|    x lp

n
. 

If f is continuous linear functional  

  |f(x)| = 
n

1
ii yx  
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n

1

|xi yi| 

           

q/1
n

1i

q
i

p/1
n

1i

p
i |y||x|  

[By using Holder‟s inequality] 

  |f(x)|  

q/1
n

1i

q
i |y| || x || 

Thus we have 

  || f||  

q/1
n

1i

q
i |y|  

since |f(x)|  ||f|| ||x|| 

  

q/1
n

1i

q
i |y|Inf||f||  

For the other inequality consider the vector x defined by  

  xi = 0 if yi = 0 

and  xi = 
i

q
i

y

|y|
 otherwise.  

  f(x) = 
n

1i

q
i

n

1i
ii |y|yx  

  
p/1

n

1i

p
i

n

1i

q
i

|x|

|y|

||x||

|)x(f|
 

   = 
p/1

n

1i

)1q(p
i

n

1i

q
i

|y|

|y|

  since |yi|
q 1

 = |xi| 
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   = 
p/1

n

1i

q
i

n

1i

q
i

|y|

|y|

 

   = 

q/1
n

1i

q
i

p

1
1

n

1i

q
i |y||y|  

  ||x|||y|
1

|)x(f|
q/1

n

1i

q
i  

So for particular choice of x, we have 

 |f(x)| = 

q/1
n

1i

q
i |y| ||x||  ||f|| ||x|| 

 
q/1

n

1i

q
i |y|   ||f|| 

Thus necessarily, we have 

  ||f|| = 

q/1
n

1i

q
i |y|   f n

ql  So x n
ql   f n

ql  

Case 2 :- When p = 1, .l)*l( nn
1  

Here we have 

  ||x|| = 
n

1i
i |x|    where [ x

n
1l  

It follows that  

  |f(x)| = 
n

1
ii

n

1
ii |yx|yx  

          = 
n

1
ii |y||x|  

           |x||y|max i

n

1
i

ni1
  x =  (x1, …xn) 

n
1l . 
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Since we know 

  |f(x)|  ||f|| ||x|| 

we see that ||f||  |y|max i
ni1

 

Now |y|max i
ni1

 = |yk| say for some, k, 1  k  n. 

Choose an x = (x1,…, xn) 

such that  xi = 0  if i  k 

      = xk = 
k

k

y

|y|
 

Note that f  0, then  yi  0 such that yk  0. 

Thus |f(x)| = |y|
y

y.|y|
yx k

k

kkn

1
ii  by definition of x. 

 ||f|| = |)x(f|sup
1||x||

  |yk| 

since   ,....
y

|y|
,...,0,0

k

k  has norm 1. 

 ||f||  
ni1

max  | yi | 

 ||f|| = 
ni1

max | yi | 

So we have 
nn

1 l)*l( . 

Case 3 :-  
n
1

n l)*l( . 

where   ||x|| = 
ni1

max |xi| 

we have f(x) = 
n

1
ii yx  

  |f(x)| = 
n

1
ii

n

1
ii |y||x|yx  
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          = 
ni1

max  | xi| 
n

1
i |y|  

Since |f(x)|  ||f|| ||x|| 

  ||f||  
n

1
i |y|  

consider the vector x defined by  

  xi = 0 if yi = 0. 

  xi = 
i

i

y

|y|
 otherwise 

we have |f(x)| = 
n

1i
i

n

1i i

ii |y|
y

y|y|
 

  

i

i

ni1

n

1
i

i
ni1

n

1i
i

y

|y|
max

|y|

|}x{|max

|y|

||x||

|)x(f|
 

    = 
n

1
i

i

i

ni1

n

1
i

|y|

y

|y|
max

|y|

 

  |f(x)| = 
n

1
i |y|  ||x||  ||f|| ||x|| 

  
n

1
i |y|   ||f|| 

Thus 

  ||f|| = 
n

1
i |y|     where  f 

n
1l  

Thus  
n
1

n l)*l(  

Remark :- A normed linear space may be complete without being reflexive as 

we will see   
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  (C0)* = l1 

where C0 = {space of all convergent sequences converges to zero} and  

  (C0
*
)* = l1

*
 == l  

Thus C0 is not a reflexive.  But C0 is complete space.  

Theorem :- C[0, 1] is not regular [reflexive] 

Proof :- Here C[0, 1] denotes the set of all real continuous functions 

  x = x(t) on [0, 1] and 

and  || x || = 

2/1
1

0

2 dt|)t(x|  

Note that C[0, 1] is not a Banach space under this norm. 

Assume that C[0, 1] is regular.  An arbitrary linear functional F(f) defined on 

the space V of all functions of bounded variation.  Then must have the form Fx 

(f) = f(x) for suitably chosen x C[0, 1].  Recalling the general form of 

functional C[0, 1], we can write for an arbitrary F(f), 

  Fx(f) = f(x) = 
1

0

)t(x df(t)    …(1) 

where f(t) denotes the function of bounded variation associated with the 

functional f(x)  C[0, 1].  The functional 

  
0xF (f) = f(t0 + 0)  f(t0 0)    …( ) 

assigns to every function f(t) of bounded variation, it jump at the point t0.  

Obviously, 
0

xF (f) is additive and  

   |
0xF (f)| = |f(t0 + 0) f (t0 0)| 

     

0

)fvar(

1

 = ||f|| 

implies the boundedness of 
0xF (f) and the fact that norm of 

0xF (f) can not be 

greater than 1.  Also 
0xF (f)  0 that is to say it is sufficient to consider 

0xF (f1) 

with  
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1ttfort

tt0for0
)t(f

0

0
1  

Because of (1), a continuous function x0(t) can be found such that 

  
0xF (f) =

1

0
0 )t(df)t(x      …(2) 

By ( ) we have 

  
0xF (f0) = 0 

for   f0(t) = td)t(x
1

0
0   

because f0(t) is continuous on [0, 1].  But on the other hand 

  
0xF (f0) = 0td)t(x)t(fd)t(x

1

0
00

1

0
0  

because x0(t)  0.  This is a contradiction.  Therefore C[0, 1] can not be regular 

(reflexive) 

Uniform Boundedness Principle   

The following theorem i.e. Uniform Boundedness Principle enables us to 

determine whether the norms of a given collection of  bounded linear 

transformations {Ti} have a finite least upper bound or equivalently if there is 

some uniform bound for the set (||Ti||). 

So we prove the following results : 

Theorem 1: (Banach-Steinhaus or Uniform Boundedness Principle) Let B be a 

Banach space and N a normed linear space. If {Ti} is a non empty set of 

continuous linear transformations of B into N with the property that {Ti(x)} is 

a bounded subset of N for each vector in B, then (||Ti||) is a bounded set of 

numbers that is {Ti} is bounded as a subset of ß(B, N). 

Proof : For each positive integer n, let 

  Fn = {x ; x  B and || Ti(x) ||  n for all i }  

we claim that Fn is a closed subset of B. To show this let y be a limit point of 

Fn. Then there exists      x  Fn such that  x  y and || x – y || < . But since Ti 

are continuous , we have 
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  || Ti(x) – Ti(y) || <  whenever || x – y || < . 

Now  Ti(y) = Ti(y – x + x) 

and so  || Ti(y) || = || Ti(y – x) + Ti(x) || 

      || Ti(y – x) || + || Ti(x) || 

     = || Ti(y) – Ti(x) || + || Ti(x) || 

     <  + n whenever  || x – y || <  

      n. 

Hence y  Fn. Thus Fn is closed. Also by our assumption 

   B = 
1n

nF   

Since B is complete , using Baire‟s Theorem , we see that one of the Fn , say 

inF has non – empty interior and thus contains a closed sphere S0 with centre x0 

and radius r0 > 0. Therefore each vector in every set Ti(S0) has norm less than 

or equal to n0 , that is || Ti(S0) ||  n0. 

Clearly S0 – x0 is the closed sphere with radius r0 centred on the origin and so 

0

00

r

xS
is the closed unit sphere S. Since x0 is in S0 , we have  

  || Ti(S0 – x0) || = || Ti(S0) – Ti(x0) || 

               || Ti(S00 || + || Ti(x0) || 

              n0 + n0 = 2 n0 . 

This yields  

   || Ti(S) || = || Ti 
0

00

r

xS
 ||  

0

02

r

n
 

and therefore  

  || Ti || = sup { || Ti(S) || ;    || S ||  1 } 

             sup 
0

02

r

n
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            = 
0

02

r

n
  for every i.  

which completes the proof of the theorem. 

Consequences of Uniform Boundedness Principle 

We prove some consequence of Banach – Steinhaus Theorem (Uniform 

Boundedness Principle) having several applications in analysis. 

Theorem 2: A non empty subset X of a normed linear space N is bounded if 

and only if f(X) is a bounded set of numbers for each f in N*. 

Proof : Since |f(x)|  || f || . || x || , it follows that if X is bounded , then f(X) is 

also bounded for each f. 

To prove the converse , we write X = {xi}. We now use natural imbedding to 

map X to the subset }{
ixF  of N**. The assumption that f(X) = {f(xi)} is 

bounded for each f implies that for )}({ fF
ix is bounded for each f. Moreover 

since N* is complete , uniform boundedness theorem shows that }{
ixF is a 

bounded subset of N**. Since natural imbedding preserves norms , therefore X 

is evidently a bounded subset of N. This completes the proof of the theorem. 

Theorem 3: Let X be a Banach space and Y , a normed linear space. Let {Tn} 

be a sequence of terms from ß(X, Y) covering strongly to T. Then there exists 

a positive constant M such that       || Tn || < M for all n.  

Proof : Since  Tn  T , then  

   
n

lim
 Tn  x  = T x  for all x . 

This in turn implies that 

   
n

sup
|| Tn(x) || <  for all x . 

Now using uniform boundedness principle , we must have 

   
n

sup
 || Tn || <  . 

and therefore the theorem is proved. 

Definition : Let {Tn} be a sequence of linear transformation from ß(X , Y). 

Then {Tn} is said to be a strong Cauchy sequence if the sequence {Tn(x)} is a 

Cauchy sequence for all x  X. 

S 
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Further a space ß(X , Y) is said to be complete in the strong sense if every 

strong Cauchy sequence in ß(X, Y) converges strongly to some member of the 

space. 

We now prove the following : 

Theorem 4: If the spaces X and Y are each Banach spaces , then ß(X , Y) is 

complete in the strong sense. 

Proof : Let < Tn > be a strong Cauchy sequence in ß(X , Y).We must show 

that there is some element T of ß(X , Y) to which < Tn > converges strongly. 

Since < Tn > is a strong Cauchy sequence , it follows by definition that for any 

x  X < Tn x > is a Cauchy sequence of elements of Y. Since Y is a Banach 

space, the limit of this sequence must exist in Y. Thus for any x  X , the 

function  

   Tx = 
n

lim Tn x      (1) 

Is defined. Clearly , T is linear transformation and (1) is equivalent to saying 

that  

   Tn  T.  

It remains to show that T is a bounded linear transformation. Since X is a 

Banach space and < Tn > converges strongly to T, theorem 3 implies that  

   || Tn || < M , for all n and some positive constant M. 

Since for any x  X , we can say 

  || Tn x ||  || Tn || . || x || 

this implies that  

  || Tn (x) ||  M . || x ||  

for any x and every n. Since it is true for every n, it must also be true in the 

limit. Thus 

   
n

lim || Tn(x) ||  M . || x ||. 

Since norm is continuous , we have 

  || 
n

lim
Tn x ||  M . || x || 

or  || Tx ||  M . || x || 
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for every x. Hence T is bounded. Thus we have shown that every strong 

Cauchy sequence in   ß(X , Y) converges strongly to some element T of              

ß(X, Y). Hence ß(X , Y) is complete in the strong sense and the proof is 

complete. 

We now define what is meant by a week Cauchy sequence of elements of the 

normed linear space X.  

Definition : The sequence of element {xn} of the normed linear space x is said 

to be a weak Cauchy sequence if < f(xn) > is a Cauchy sequence of elements 

for al f  X* , the conjugate space of X. 

Theorem 5: In a normed linear space X , every Cauchy sequence is bounded. 

Proof : Let < xn > be a weak Cauchy sequence of elements of a normed linear 

space X. This means that < f(xn) > is a Cauchy sequence for all f  X*. We 

recall the natural imbedding 

   : X  X** 

        x   Fx 

where Fx(f) = f(x) for all x  X and f  X*.  is a bounded linear functional 

satisfying 

  || (x) || = || x ||  for all x  X.  

Since < f(xn) > is a Cauchy sequence of complex numbers , for any f  X* , we 

have 

  
n

sup
| 

nxF (f) | = 
n

sup
| f(xn) | <      (1) 

But X* is a Banach space. Therefore by Uniform Bounded Principle (1) yields 

   
n

sup
|| F(xn) || <  

Since   || 
nxF || = || (xn) || = || xn || 

therefore   
n

sup
 || xn || <  . 

Hence the weak Cauchy sequence {xn} is bounded. This completes the proof. 
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Theorem 6: In a normed linear space X , if the sequence < xn > converges 

weakly to x , that is        xn  x , then there exists some positive constant m 

such that || xn || < m for all n. 

Proof : we note that if  

   xn  x . 

then certainly < xn > is a weak Cauchy sequence , Hence by Theorem 5 , { xn } 

is bounded , that is   || xn ||  m for constant m and the proof is complete. 

After having introduced the definition of weak Cauchy sequence , we give the 

following definition of weak completeness of a space. 

Definition : A normed linear space X is said to be weakly complete if every 

Cauchy sequence of elements of X converges weak to some other member of 

X.  

Our next theorem shows that any reflexive space is weakly complete. 

Theorem 7: If the normed linear space X is reflexive , then it is also weakly 

complete.  

Proof : Suppose < xn > is a weak Cauchy sequence of elements of X. this 

means that < f(xn) > is a Cauchy sequence for all f  X*. Now we consider 

natural imbedding 

   : X  X** 

        x  Fx  

This mapping implies that < )( fF
ix > is a cauchy sequence of scalars for all f 

 X*. Since the underlying field is either real or complex (each of which is 

complete metric space) 

This implies that the functional y defined on X** by  

  y(f) = 
n

lim
 

nxF  (f) 

exist for every f  X*.   It can be verified that y is linear. We shall now show 

that y is a bounded linear functional. 

Since || 
nxF || = || xn || and < xn > is a Cauchy sequence , it follows by 

theorem 5 , that there is some positive number M such that 

  || xn ||  M. 

w 

w 
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for all n, this implies that  

  | 
nxF (f) |  = | f(xn) |  || f || . || xn || 

            M . || f || 

for any f  X* and all n . Hence it is true in the limit that is  

  lim | 
nxF (f) |  M || f || 

  | lim 
nxF (f) |  M . || f || 

or  | y(f) |  M || f ||  using (1) 

for all f  X* and all n.  

This however implies that y is a bounded linear functional or that y  X**. 

Since X is reflexive there must be some x  X that we can identify with y that 

is , there must be some x  X such that                 y = Fx . 

Hence for any f  X* , we can say 

  
n

lim
 f(xn) = 

n

lim
nxF (f)  

       = y(f)  

       = Fx(f) 

       = f(x) 

Since this holds for any f  X* , we have 

  xn  x . 

Thus we have shown that each weak Cauchy sequence of elements of X 

converges weakly to some other member of X. Hence X is weakly complete 

and the proof of the theorem is complete. 

Open Mapping Theorem and its applications  

First we present some definitions which will be required in the sequel. 

Definition :- If T : V W is a linear transformation, then the set N of all 

vectors x V such that          Tx = 0 is called the null space (or kernel) of T. 

Thus 

w 
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  N = {x V; Tx = 0} = T
1
{0} 

Also Tx1 = Tx2  T(x1  x2) = 0  x1 x2 N and that if x N, then Tx = 0 so 

that if T is injective (one to one).  Thus we have shown that T is injective if and 

only if N = {0}. 

 Now suppose that X and Y are normed linear spaces and T : X X is a 

continuous linear mapping.  Let x0 N (null space of T) and let xn x.  Since T 

is continuous Txn Tx thus Tx = lim Txn = lim 0 = 0. Hence x N.  This 

proves that if T : X Y is continuous, then null space of T is closed.  

Definition :- Let X and Y be normed linear spaces.  Then a linear mapping T : 

X Y will be called open mapping if it maps open sets into open set.  

Definition :- The mapping T : X  Y where X and Y are normed spaces as 

will be called a homeomorphism if it is bijective, continuous and open or 

equivalently T : X Y is a homeomorphism if it is bijective and                           

bi-continuous. 

Definition :- Let E be a normed linear space.  A subset A of E is called no-

where dense in E if A  has an empty interior.  Q is everywhere dense in R 

while integers are nowhere dense in R.  Thus a nowhere dense set is thought of 

a set which does not cover much of the space. 

Baire Category Theorem :- It states that a complete space can not be covered 

by any sequence of no-where dense sets.  

Open mapping Theorem or Interior Mapping Principle  

First of all, we prove a Lemma 

Lemma :- Let B and B  be Banach spaces.  If T is a continuous linear 

transformation of B onto B , then the image of each open sphere centred on the 

origin in B contains an open sphere centred on the origin, in B . 

Proof :- Let Sr and Sr  be open spheres with radius r centred on the origin in B 

and B  respectively.  Then  

  T(Sr) = T(rS1) = r T(S1) 

So, it is sufficient to show that T(S1) contains some Sr . 

We first prove that )S(T 1  contains some Sr .  Since T is onto, we note that           

B  = 
1n

T(Sn). 
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Being a Banach space, B  is complete and so by Baire‟s theorem, some 

)S(T
0n has an interior point y0 lying in )S(T

on .  Since the mapping y y y0 is 

a homeomorphism of B  onto itself.  )S(T
0n y0 has the origin as an interior 

point.  Since y0 is in )S(T
0n we have  

  )S(T
0n  y0  T(S2n0)  

which in turn implies that  

  )S(Ty)S(Ty)S(T 0n200n00n  

which shows that the origin is an interior point of )S(T 0n2 .  As we know that 

multiplication by any non-zero scalar is a homeomorphism of E  onto itself. So 

  )S(Tn2)S(Tn2)S(T 10100n2  

and hence the origin is also an interior point of )S(T 1 .  Thus )S(TS 1
'

 for 

some positive number .  We complete the proof by showing that S  

)S(T 1 which is equivalent to S /2  T(S1). 

Let y B  be such that ||y||< .  Since y is in )S(T 1 , there exists a vector x1 in B 

such that ||x1|| < 1 and ||y y1||<
2

, where y1 = T(x1).  Further S /2 )S(T 2/1  

and ||y y1|| <
2

, there exists a vector x2 in B such that ||x2|| <
2

1
 and ||(y y1) 

y2|| <
4

 where y2 = T(x2), continuing in this way, we get a sequence <xn> in 

B such that ||xn|| < 1n2

1
 and  

  ||y (y1 + y2 +…+ yn) || < n2
       

where yn = T(xn).  Let Sn = x1 + x2 +…+ xn, then  

  ||Sn|| = ||x1 + x2 +…+ xn|| 

           ||x1|| + ||x2|| +…+ ||xn|| 

          < 1 + 2
2

1
...

2

1
1n
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Also for n > m, we have 

       ||Sn Sm|| = ||xm+1 + xm+2 +…+ xn|| 

           ||xm+1|| + ||xm+2|| +…+ ||xn|| 

          < 
1n1mm 2

1
...

2

1

2

1
 

          = 

2

1
1

2

1
1

2

1
mnm

 

          = 
mn1m 2

1
1

2

1
 0 as m, n . 

Hence {Sn} is a Cauchy sequence in B and since B is complete, there exists a 

vector x in B such hat  

  
n
lim Sn = x and so  

        ||x|| = ||lim Sn|| = lim ||Sn||  2 < 3 

which implies that x S3.  Now 

  y1 + y2 +…+ yn = T(x1) + T(x2) +…+ T(xn) 

since T is continuous, x = lim Sn 

  Tx = 
n

lim  (TSn) 

       = lim (y1 + y2 +…+ yn) 

  Tx = y 

Thus y = Tx where ||x|| < 3 so that y T(S3)  

Hence we have proved that 

  y  S   y  T(S3) and so S   T[S3] 

Statement of Open Mapping Theorem. 

Let B and B  be Banach spaces.  If T is a continuous linear transformation of B 

onto B , then T is an open mapping. (Thus if the mapping T is also one to one,  
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then T
1
 is continuous). 

Proof of Theorem :- It is sufficient to show that if G, is an open set in B, then 

T(G) is also open in B .  To show it let y T(G) we shall show that y is an 

interior point of T(G) i.e. there exists an open sphere centered on y and 

contained in T(G).  Let x be a point in G such that y = Tx.  Since G is open, x 

is an interior point of G.  

Therefore x is the centre of an open sphere written in the form x = Sr, 

contained in G.  Hence by the above Lemma, T(Sr) contains some sphere 

11
rr
'SyThen.'S  is an open sphere centred on y. 

Moreover y + 
1

r
'S  y + T(Sr) 

              = T(x) + T(Sr) 

              = T(x + Sr) 

               T(G) 

Hence y + 
1

r
'S is an open sphere centred on y and contained in T(G).  

Consequently T(G) is open. Hence the result. 

Theorem :- A one to one continuous linear transformations of one Banach 

space onto another is a homeomorphism. 

Proof :- The given hypothesis yields that the linear transformation is bijective 

and continuous.  Further by open mapping theorem, the linear transformation is 

also open.  Hence it is homeomorphism.  

Projections on Banach spaces 

Definition :- Let L be a vector space.  We say that X is the direct sum of its 

subspace say M and N; if every element z L has a unique representation z = x 

+ y with x in M and y in N.  In such a case we write L = M  N. 

Define a mapping P : L L by P(z) = x.  Then P is a linear transformation, then  

(1) P(z) = z if and only if z M 

(2) P(z) = 0 if and only if z N 

(3) P is idempotent that is P
2
 = P.  Infact 

P
2
(z) = P(P(z)) = P(x) = x = P(z). 
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Such a linear mapping P is called a projection on the linear space L.  

Thus if L is the direct sum of its subspaces M and N, then there exists a linear 

transformation P which is idempotent. 

But, however in case of Banach spaces, more is required of a projection than 

more linearity and idempotence we have 

Definition :- A projection on a Banach space is a projection on B in the 

algebraic sense (linear and idempotent) which is also continuous. 

 It follows from the above discussion that if B is the direct sum of its 

subspaces M and N, then there exists a linear transformation P which is 

idempotent.  Further we have  

Theorem :- If P is a projection on a Banach space B, and if M and N are its 

range and null space, then M and N are closed linear subspaces of B such that 

B = M N 

Proof :- We are given that P is a projection on a Banach space B and M and N 

are range and null spaces of P.  Thus P is linear, continuous and idempotent 

and  

  M = range of P = {P(z); z B} 

  N = null space of P = {z ; P(z) = 0} 

Let z B.  Consider 

  z = P(z) + (I P)z     …(1) 

where I denotes the identity transformation on B such that I(z) = z for all z B.  

Clearly P(z) is in M and since P is idempotent, we have 

  P{(I P) (z)} = {P(I P)} (z) 

            = (P  P
2
) (z) 

            = (P  P) (z) = 0 (z) = 0 

It follows therefore that (I P) (z) N, the null space of P.  Therefore equation 

(1) gives a de composition of z according to the subspaces M and N.  This 

decomposition is unique because if we have another representation as z = x + 

y, x M, y N, then  

  P(z) = P(x) = x 

and  (I P) (z) = I(z)  P(z) 
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      = z x 

      = y 

Thus B = M N.  We know that the null space of a continuous linear 

transformation is closed.  Therefore continuity of P implies that N is closed.  

Further, since M = {P(z); z B} = {x ;P(x) = x} 

 M = {x ; (I P)(x) = 0} 

It follows that M is the null space of continuous linear transformation I P and 

hence closed.  Thus M and N are closed and B = M  N.  Hence the result.  

As an application of open mapping theorem, we have  

Theorem :- Let B be a Banach space and let M and N be closed linear 

subspaces of B such that  B = M  N.  If z = x +y is the unique representation 

of a vector in B as the sum of vectors in M and N, then the mapping P defined 

by P(z) = x is a projection on B whose range and null space are M and N. 

Proof :- Let P : B B be defined by P(z) = x for z = x + y, x M, y N.  Then 

since P(z) = x for z B, we have M to be the range of P.  Also P(y) = 0 for 

y N.  Therefore N is the null space of P. 

Further 

  P
2
(z) = P(P(z)) = P(x) = x = P(z) 

Implies that P is idempotent.  Hence to prove that P is a projection on B, it only 

remains to show that P is continuous. Let  

  z = x + y, x M, y N 

be unique representation of the elements of the Banach space B.  Define a new 

norm on B by  

  ||z||  = ||x|| + ||y|| 

and let B  denote the linear space B equipped with this new norm, then B  is a 

Banach space and since 

  ||P(z)|| = ||x||   ||x|| + ||y|| = ||z||  

It follows that P in continuous as a mapping of B  into, B.  It is therefore 

sufficient to show that B and B  are homeomorphic. Let T denote the identity 

mapping of B  onto B.  Then  

  ||T(z)|| = ||z|| = ||x +y||  ||x|| + ||y|| = ||z|| . 
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Shows that T is one to one continuous linear transformation of B  onto B.  

Open mapping theorem now implies that T is a homeomorphism.  Thus B and 

B  are homeomorphic.  Hence P : B B is continuous and therefore a 

projection on B.    

Closed Linear Transformations and Closed Graph Theorem 

Let X and Y be normed linear spaces.  Then the Cartesian product X  Y of X 

and Y becomes a normed linear space under the norm defined by  

  ||(x, y)|| = ||x|| + ||y|| 

Further if X and Y are Banach spaces, then X Y is also a Banach space w.r.t. 

the norm defined above. 

Definition :- Let T : B B  be a linear transformation of a Banach space into 

another Banach space B .  Then the collection of ordered pairs. 

  GT = {(x, Tx); (x, Tx)  B B } 

is called the graph of T.  It can be shown that GT is a linear subspace of B B . 

Definition :- Let X and Y be normed linear spaces and let D be a subspace of 

X.  Then the linear transformation T : D Y is called closed if {xn} D, 
n

lim  xn 

= x and 
n

lim  Txn = y Y imply x D and y = Tx. 

As justification for the name given closed transformation in the above 

definition, we now show that a linear transformation T is closed iff its graph 

GT is a closed subspace of X Y. 

Theorem A :- A linear transformation is closed iff its graph is a closed 

subspace. 

Proof :- Let X and Y be normed linear spaces and let D be a subspace of X.  

Suppose first that   T : D Y is a closed linear transformation.  To show that 

GT is closed, we must show that any limit point of GT is actually a member of 

GT.  Therefore there must be a sequence of points of GT, (xn, Txn), xn D 

converging to (x, y), this is equivalent to  

  ||(xn, Txn)  (x, y)|| 0 

or  ||(xn x, Txn y)|| 0 

or  ||xn x|| + ||Txn y|| 0 

  xn x and Txn y 
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Since T is closed, this implies that x D and y = Tx.    

Therefore we can write that 

  (x, y) = (x, Tx) GT 

 Every limit pt (x, y) of GT is a member of GT. 

 GT is closed. 

Conversely suppose that GT is closed, and let xn x, xn D, for all n as Txn y.  

We must show that x D and y = Tx.  The condition implies that  

  (xn, Txn) (x, y) TG  

Since GT is closed we have 

  GT = TG  and thus we have. 

  (x, y) GT 

But by the definition of GT, this means that x D and y = Tx.  Hence T is a 

closed linear transformation.  This completes the proof of the theorem.  The 

next things we wish to investigate is when a bounded (continuous) 

transformation is closed.  Infact, we prove. 

Theorem B :- Let X and Y be normed linear spaces and let D be a closed 

subspace of X  If T : D Y is bounded, then T is closed.  

Proof :- D is a closed subspace of X and T : D Y is bounded.  If <xn> is a 

convergent sequence of points of D such that Txn y, then D being closed, the 

limit of the sequence <xn> must belong to D.  On the other hand, the continuity 

(boundedness) of T implies that Txn Tx. Hence y = Tx. (since Txn y).  Thus 

T becomes closed.  Hence the result. 

 An immediate consequence of the theorem is of the following : 

Corollary :- Suppose T is linear transformation from a normed linear space X 

into another normed linear space Y.  If T is continuous, then T is closed.  Also 

then using Theorem A, GT is closed. 

Proof :- We know that the entire space X is always closed, therefore Theorem 

B applies and the result follows. 

Theorem C :- Let X and Y be normed linear spaces and let D be a subspace of 

X.  If T : D Y is a closed linear transformation, then T
1
(if exists) is also a 

closed linear transformation. 
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Proof :- Since T is closed, its graph. 

  GT = {(x, Tx); x D} 

is closed, let T(D) denote the range of T.  Since T
1
 exists, for any y T(D), 

there is a unique x D such that y = Tx or x = T
1
(y).  Therefore graph of T can 

be written as  

  GT = {(T
1
y; y); y T(D)} 

Consider now the mapping 

  X Y  Y  x 

  (x, y)  (y, x) 

This mapping is isometry, since Isometrics map closed sets into closed sets and 

the set {(T
1
y; y) y T(D)} is closed.  It follows that the set {(y, T

1
y) 

y T(D)}is also closed.  But this last set is just the graph of T
1
.  Thus we have 

proved that that graph of T
1
 is closed or hence T

1
 is closed by Theorem A. 

Theorem D :- Let D be a subspace of a normed linear space X and let T:D Y 

be a linear transformation from D into a Banach space Y.  If T is closed and 

bounded, then D is a closed subspace of X. 

Proof :- It is sufficient to show that any limit point of D is also a member of D. 

Hence suppose that x is a limit point of D.  This means that there must be some 

sequence {xn} of points of D such that xn x.  Consider now 

 ||Txn Txm||  ||T|| ||xn xm|| 

Since ||xn xm|| 0 as n, m  

as every convergent sequence is Cauchy. 

It follows that <Txn> is a Cauchy sequence in Y.  But Y being a Banach space 

is complete.  Therefore there exists y Y such that 

  Txn y. 

Thus we have xn x and Txn Y.  Now since T is closed.  This implies that 

x D.  Hence D contains all its limit points and hence closed.  This completes 

the proof of the theorem. 

We now state and prove Closed Graph Theorem. 

Closed Graph Theorem 
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Theorem :-  Let B and B  be Banach spaces and let T : B B  be a linear 

transformation.  Then graph of T is closed if and only if T is continuous. 

Proof :- Suppose first that T is continuous.  Then Corollary to Theorem B 

implies that GT is closed. 

Conversely suppose that GT is closed. Since B and B  are Banach spaces.  It 

follows that B B  is a Banach space.  Since closed subsets of a complete 

metric space must be complete, it follows that GT (being closed) is Banach 

space too.  Now consider the mapping  

  f : GT B 

defined by f(x, Tx) = x 

clearly f is a linear transformation.  We claim further that f is bounded.  To 

prove this, we note that 

  ||f(x, Tx)|| = ||x||  ||x|| + ||Tx|| 

      = ||(x, Tx)|| 

which implies that f is a bounded linear transformation.  Further f(GT) = B and 

therefore f is onto.  We shall show that f is one to one.  Also we know that a 

linear transformation is one-to-one if its kernel (null space) consists of identity 

element only.  Therefore.  We need to prove that (0, 0) is the only element f 

maps into zero.  Hence, suppose  

  f(x, Tx) = x = 0. 

But x = 0 implies that Tx = 0 and so 

  (x, Tx) = (0, 0) 

and hence f is one to one.  Thus f : GT B is bijective and therefore f
1
 exists. 

Now GT and B and Banach spaces and f is a continuous linear transformation 

and f
1
 is continuous.  To complete the proof we must show that if xn x, then 

Txn Tx. [T is continuous].  Hence suppose that xn x. 

Since f
1
 is continuous, we have 

  f
1
xn f

1
x, 

 (xn, Txn)  (x, Tx)  

 (xn x, Txn Tx)  (0, 0) 

 Txn Tx 
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Thus T is continuous.    Hence the result.  

Equivalent Norms  

Suppose X is a vector space over the scalar field F and suppose that ||.||1 and 

||.||2 are each norms on X,  Then ||.||1 is said to be equivalent to ||.||2 written as 

||.||1 ~ ||.||2, if  positive numbers a and b such that 

  a || x ||1  || x ||2  b || x ||1 for all x X. 

This relation is an equivalence relation on the set of all norms over a given 

space.  Further, if two norms are equivalent, then certainly if <xn> is a Cauchy 

sequence with respect to ||.||1 it must also be a cauchy sequence with respect to 

||.||2 and vice-versa. 

 Let a basis for he finite dimensional space be [x1, x2,…, xn].  For any 

x X, there exist unique scalars 1, 2,…, n such that x = 
n

1i
i xi. Now || x ||0 

= 
i

max | i| is indeed a norm.  This norm is called Zeroth Norm. We  

Theorem :- On a finite dimensional space, all norms are equivalent. 

Proof :- We shall show that all norms are equivalent by showing that any norm 

is equivalent to the particular norm defined above and called the Zeroth norm. 

 Let a basis for the finite dimensional space X is given by  

  x1, x2,…, xn. 

For any x X1 there exist unique scalars 1, 2,…, n such that 

  x = 
n

1i
i xi      …(*) 

Now  || x ||0 = 
i

max | i| 

is indeed  a norm. 

Now let ||  || be any norm on X.  We want to find real numbers a, b > 0 such 

that (1) is satisfied, where ||  ||2 is replaced by || . || and || . ||1 is replaced by ||  ||0. 

 The right hand side of (1) easily satisfies  

  a || x ||1  || x ||2  b || x ||1     

  …(1)] 

since from (*) 
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  || x || = 
n

1i
ii xα   

n

1i

| i| || xi || 

          
i

max | i| 
n

1i

|| xi ||   

          || x ||0 
n

1i

 || xi|| 

because, since the basis is fixed, we can take as the number b  

  b = 
n

1i

 || xi || 

to get for any x X, 

  || x ||  b || x ||0 

The left side of (1) does not follow quite as simply.  Consider the simple case 

of a one-dimensional space with basis x1.  Any vector in the space X can be 

written uniquely as 

  x = 1 x1 

for some 1 F.  Hence 

  || x || = | | || x1 || = || x ||0 || x1 || 

Thus in this case, the number a on the left side of (1) can be taken to be just || 

x1 ||.  Having verified this, we shall now proceed by induction, suppose the 

theorem is true for all spaces of dimension less than or equal to n 1.  We can 

now say that, if dim X = n, with basis {x1, x2…, xn} and  

  M = [{x1, x2,…, xn 1}] 

be the subspace spanned by the first n 1 basis vectors, then  

  ||  || ~ ||  ||0 

in M.  Since this is so, if {yn} is a cauchy sequence of elements from M w.r.t. 

to ||  ||, then {yn} is also a cauchy sequence with respect to ||  ||0.  Consider the 

ith term of this sequence now : 

  yi = 1
(i)

 x1 + 2
(i)

 x2 + …+ )i(
1nα  xn 1 

By the above 
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  || yn ym||0  0 as n, m     …(2) 

since {yn} is a cauchy sequence. 

But ||yn  ym||0 = 
j

max | j
(n)

  j
(m)

| 

which by (2) implies 

  | j
(n)

  j
(m)

|  0  (as n, m )   …(3) 

for j = 1, 2,…, n 1.  Since F = R or C, and each is complete and (3) states that 

if the { j
(m)

} is a cauchy sequence, there must exist 1, 2,…, n F such that  

  j
(m)

  j (j = 1, 2,…, n 1) 

In view of this, it is clear that  

  ym y = 
1n

1j
i xi 

with respect to the zeroth norm.  Further 

  
||||

m

||||

m yyy
0

y   

Thus under the induction hypothesis, are have shown that subspace M is 

complete with respect to an arbitrary norm which immediately implies that it is 

closed. 

Furthermore, from the above, we see that this statement will be true for 

any finite dimensional subspace of a normed space.  Consider the nth basis 

vector xn now and from the set 

       xn + M = {xn+ z |z M} 

Since for any y,  z M, 

|| xn +z  (xn + y)|| = || z y|| 

Since xn + M is seen to be isometric to M under the mapping z xn+z.  Hence 

since M is closed,   xn + M must be closed as well which implies that C(xn + 

M) is open, [where C(xn + M) is the complement of xn + M] we now contend 

that 

  0  xn + M 

for if it did, we would be able to write for some 1, 2,…, n 1  F, 
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  0 = xn + 1 x1 + 2 x2 + …+ n 1 xn 1, which is ridiculous.  Also 

0 is a point of the open set C(xn + M); Hence there must be a whole nbd of zero 

lying entirely within C(xn+M)). In other words, there must exist Cn > 0 such 

that for any  

  x  xn + M, || x 0||  Cn.  0  C(xn +M) 

[Note that here we say that the distance from any point xn + M to zero is 

positive]. 

Thus for all i F (i = 1, …, n 1), 

  || 1 x1 + 2 x2 + …+ n 1 xn 1 + xn ||  Cn, 

or  n1n
n

1n
n

n

1 xx
α

α
...x

α

α
  Cn  

which implies for any n F, that  

  || 1 x1 + 2 x2 +…+ n xn||  | n| Cn 

because we can write for n  0,  

Suppose now that we had not taken 

  M = [{x1, x2,…, xn 1}] 

but had taken instead 

  [{x1, x2…, xi 1, xi+1,…, xn}] 

since the only fact about M was that its dimension was n 1.  It is clear that in 

an analogous fashion we could have arrived at some ci > 0 such that 

  || 1 x1 +…+ n xn||  Ci | i| 

for any i = 1, 2,…,n.  In view of this we can say for any 

  x = 
n

1i
iα xi, 

  || 1 x1 + 2 x2 +…+ n xn||  i
i

i
i

i
i

Cmin|α|maxCmin  || x ||0 

This completes the proof of since a = 
i

min Ci is positive. 
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Corollary 1 :- If X is any finite dimensional normed linear space, X is 

complete [since all norms are equivalent]. 

Corollary 2 :- If X is a normed linear space and M is any finite dimensional 

subspace, M is closed. 

Theorem :- Suppose A : X Y, where X and Y are normed linear spaces.  If X 

is finite dimensional, A is bounded.  

Proof :- Suppose dim X = n, that a basis for X is given by  

  x1, x2,…, xn. 

In view of this for any x X, scalars 1, 2…, n such that  

  x =
n

1i
i xi 

and A is linear, we have 

  Ax = 
n

1i
i Axi 

Letting  K = 
n

1i

||Axi||, we have 

  || Ax|| = 
n

1i
iiAxα   

              
n

1i

| i| || Axi|| 

            || x ||0. K.  

since   || x ||0 = 
i

max | i| 

Since all norms in a finite dimensional space are equivalent and A is bounded 

with respect to zeroth norm, it follows that A must be a bounded linear 

transformation no matter what norm is chosen for X.  

Weak and Strong convergence 

Definition: If || Tn – T ||  0, then we say that the sequence < Tn > of operators 

(or linear transformation) converges to T and this convergence‟s is called 

convergence in norm or strong convergence. The linear transformation T is 

said to be the strong limit of the sequence < Tn >. Also              < Tn > is said to 
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converge weakly towards the linear transformation T if the sequence    < Tn(x) 

> converges to Tx. 

 

Definition: Let E be a normed linear space, < xn > a sequence of elements of E 

and x0  E. if the sequence f(xn)  f(x0) as n   for all functionals                 

f  E*, then < xn > is said to converge weakly to x0 and we write  

   xn  x0. 

x0 is called the weak limit of the sequence < xn >. 

 

Remark:  A sequence can not converge weakly to two different limits, that is 

the weak limit of a sequence is unique. 

We suppose that         xn  x0 and xn  y0 i.e f(xn)  f(x0) and f(xn)  f(y0) 

for an arbitrary linear f. Then 

   f(x0) = f(y0) , or  

   f(x0 – y0) = 0 

Now if we choose an f0 with || f0 || = 1 and f0(x0 – y0) = || x0 – y0 ||, then we 

have 

   || x0 – y0 || = 0 i.e. x0 = y0 

 

Prop: Let N be a normed linear space and (xn)  N. Then xn  x in norm  

 

     implies  xn  x  . 

Proof:    | f(xn) – f(x) | = | f(xn – x) | 

              || f || || xn – x ||  0 as n   

     [since xn  x in norm  f  N*] 

    xn  x  

Remark: Thus by above prop, norm convergence or strong convergence   

Weak convergence. 

But the weak convergence need not imply strong convergence. However in a 

finite dimensional normed linear space, the two convergences are equivalent. 

 

Theorem  : In a finite dimensional space, the notion of weak and strong 

convergence are equivalent. 

Proof: Since strong convergence  weak convergence always. 

For the converse suppose < xn > converges weakly where i. e. f(xn)  f(x)    f 

 E* and E is of finite dimensional. Since E is finite dimensional,  a finite 

system of linearly independent elements e1, e2,……,ek and every x  E can be 

represented in the form 

   x =  1e1 + 2e2  + …………….+ k ek 

with real 1, 2 ,……, k . Thus 

 

   xn = 1
 (n)

 e1 + 2
 (n)

 e2 + …………….+ k
 (n)

 ek 

w 

w 

w 

w 

w 
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Now we consider such functionals fi  E* for which fi(ei) = 1 and fi(ek) = 0 for 

k  i. Thus                        fi(xn) =  i
(n) 

and fi(x0) = i 
(0)

  

 

But since the sequence f(xn)  f(x0) for every linear functional f, so also                

fi (xn)  fi(x0) that is  

   i
(n) 

 l
iu

(0)
  for i = 1, 2, ….., k 

Let M be the greatest of the numbers ||ei || (i = 1, 2, …., k) i. e. M = Max || ei ||.  

Then for any given  

 > 0,  an n0 s. that 

   
K.M

||
)0(

i
)n(

i  

for all i = 1, 2, …., k and n  n0. Thus  

   || xn – x0 || = ||e)(|| i
)0(

i
)n(

i

k

1i

 

          ||e|||)(| i
)0(

i
)n(

i

k

1i

 

          < . 

Hence the sequence < xn > converges strongly to x0 . 
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Unit-IV 

Compact Operations on Normed 

Spaces   

 

Definition:- Let X and Y be normed spaces.  An operator T : X Y is called a 

compact linear operator (or completely continuous linear operator) if T is linear 

and if for every bounded subset M of X, the image T(M) is relatively compact 

that is the closure )M(T  is compact. 

Remark:- Many linear operators in analysis are compact.  A systematic theory 

of compact linear operators emerged from the theory of integral equations of 

the form   

  (T I) x(s) = y(s) where Tx(s) = 
b

a

K(s, t) x(t)dt. 

where  is a parameter, y and kernel K are given functions (subject to 

certain conditions) and x is the unknown function.  Such equations also play a 

role in the theory of ordinary and partial differential equations.  The term 

compact is suggested by the definition.  The older term completely continuous 

can be motivated by the following Lemma which shows that a compact linear 

operator is continuous but the converse is not generally true.  

Relation of Compact and continuous linear operator  

Theorem 1. Let X and Y be normed spaces.  Then  

(a) Every compact linear operator T : X Y is bounded, hence continuous 

(b) If dim X = , the identity operator I : X X (which is continuous) is not 

compact. 

Proof (a) Since the unit sphere U = {x X : || x || = 1}is bounded and T is 

compact, so by definition )U(T  is compact.  Now since every normed space is 

metric space and by the result “Every compact subset of a metric space is 

closed and bounded.” so that 

  
1||x||

sup || Tx || < . 
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Hence T is bounded.  But by the result “Let T : D(T) Y be a linear operator, 

where D(T)  X and X, Y are normed spaces. Then  

(1) T is continuous if and only if T is bounded. 

(2) If T is continuous at a single point, T is continuous”. 

Thus T is continuous.  Hence every compact linear operator T : X Y is 

bounded and hence continuous. 

(b) Since the closed unit ball M = {x X; ||x||  1} is bounded.  If dim X = , 

then by the result “If a normed space X has the property that the closed unit 

ball M = {x ; || x ||  1} is compact, then X is finite dimensional” M can not be 

compact.  Thus I(M) = M = M  is not relatively compact.  

Remark :- From the definition the compactness of a set, we obtain a useful 

criterion for operators. 

Theorem 2 :- Let X and Y be normed spaces and T : X Y be linear operator.  

Then T is compact if and only if it maps every bounded sequence <xn> in X 

onto a sequence <Txn> in Y which has a convergent subsequence.  

Proof :- If T is compact and <xn> is bounded, then the closure of <Txn> in Y is 

compact.  Since every normed space is metric space and by the definition, “a 

metric space X is said to be compact if every sequence in X has a convergent 

subsequence”. Thus <Txn> contains a convergent subsequence. 

Conversely assume that every bounded sequence <xn> contains a subsequence 

knx  such that 
knTx converges in Y.  Consider any bounded subset B 

 X, and let <yn> be any sequence in T(B).  Then yn = Txn for some xn B and 

<xn> is bounded since B is bounded.  But by assumption <Txn> contains a 

convergent subsequence.  Hence by definition of compactness, )B(T  is 

compact.  Since <yn> in T(B) was arbitrary.  Thus by definition of compact 

operator, T is compact.  

Remark :- The sum T1 + T2 of two compact linear operators from normed 

space X to normed space Y is compact. Similarly T1 is compact, where  is 

any scalar.  Thus the compact linear operators from X into Y form a vector 

space.  

Compactness of linear transformation on a finite dimensional space 

Theorem 3 :- Let X and Y be normed spaces and T : X Y a linear operator.  

Then  

(a) If T is bounded and dim T(X) < , the operator T is compact. 
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(b) If dim X < , the operator T is compact. 

Proof (a) :- Let <xn> be any bounded sequence in X.  Then the inequality               

|| Txn||  ||T || . ||xn|| shows that <Txn> is bounded.  Now by the result “ In a 

finite dimensional normed space X, any subset M  X is compact if and only if 

M is closed and bounded” and dim (X) <  implies that <Txn> is relatively 

compact.  It follows that <Txn> has a convergent subsequence. But by 

Theorem 2, T : X Y is compact if and only if T maps every bounded 

sequence <xn> in X onto a sequence <Txn> in Y which has a convergent 

subsequence”.  Hence the operator T is compact. 

(b) Since we know that if a normed space X is finite dimensional then every 

linear operator on X is bounded operator.  Thus T is bounded.  Also dim              

X < .  Now by the result “If T is a linear operator and dim D(T) = n< , then 

dim R(T)  n “where D(T) and R(T) are domain and range of T.”  Thus if dim 

(X) < , then dim T(X) < .  Now since dim T(X) <  and T is bounded.  It 

follows by (a) part that the operator T is compact.  

Compactness of the limit of the sequence of Compact Operators 

Theorem 4 :- Let < Tn > be a sequence of compact linear operators from a 

normed space X into a Banach space Y.  If < Tn > is uniformly operator 

convergent, say ||Tn  T|| 0, then the limit operator T is compact. 

Proof :- Using a diagonal method, we show that for any bounded sequence 

<xm> in X, the image <Txm> has a convergent subsequence and then apply 

Theorem 2 i.e. “Let X and Y be normed spaces and T : X Y, a linear 

operator.  Then T is compact if and only if it maps every bounded sequence 

<xn> in X onto a sequence <Txn> in Y which has a convergent subsequence.” 

Since T1 is compact, <xm> has a subsequence <x1,m> such that <T1x1,m> is 

Cauchy.  Similarly <x1,m> has a subsequence <x2,m> such that <T2 x2,m> is 

Cauchy.  Continuing in this way, we see that the diagonal sequence                     

<ym> = <xm,m> is a subsequence of <xm> such that for every fixed positive 

integer n, the sequence <Tn ym>m N is Cauchy. <xm> is bounded, say ||xm||  c 

for all m.  Hence ||ym||  c for all m.  Let >0.  Since  

 Tm T ,  there is an n = p such that ||T Tp|| < /3c  …(1) 

Since <Tp ym>m N is Cauchy, there is an N such that 

  ||Tp yj  Tp yk|| <
3

     …(2)    

(j, k > N) 

Hence we obtain for j, K > N 
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  ||Tyj Tyk||  ||Tyj  Tp yj|| + ||Tp yj  Tp yk|| + ||Tp yk  Tyk|| 

    ||T Tp|| . ||yj||  +
3

 + ||Tp  T|| . ||y|| 

   < 
c3

. c +
3

 + 
c3

. c     (Using (1) and (2)) 

   =  

This shows that <Tym> is cauchy and converges since Y is complete.  But <yn> 

is a subsequence of the arbitrary bounded sequence <xm>. Hence using 

theorem 2, which states that “Let X and Y be normed spaces and T : X Y, a 

linear operator.  Then T is compact if and only if it maps every bounded 

sequence <xn> in X onto a sequence <Txn> in Y which has a convergent 

subsequence,” we get that the operator T is compact.  

Remark :- The above theorem states conditions under which to limit of a 

sequence of compact linear operators is compact.  This theorem is also 

important as a tool for proving compactness of a given operator by exhibiting it 

as the uniform operator limit of a sequence of compact linear operators. 

Note that the present theorem becomes false if we replace uniform operator 

convergence by strong operator convergence ||Tnx  Tx|| 0.  This can be seen 

from Tn : l
2

l
2
 defined by Tn(x) = ( 1, …, n, 0, 0,…)  

Where x = ( i) l
2
.  Since Tn is linear and bounded, Tn is compact by Theorem 

3(a).  Clearly Tnx x = Ix but I is not compact since dim l
2
 = . 

The following example illustrates how the theorem can be used to prove 

compactness of an operator. 

Example (space l
2
).  To prove compactness of T : l

2
l
2
 defined by y = ( j) = 

Tx where j = j/j for  j = 1, 2,…. 

Solution :- T is linear.  If x = ( j) l
2
, then y = ( j) l

2
.  Let Tn : l

2
l
2
 be 

defined by  

  Tnx = ,....0,0,
n

ξ
,...,

3

ξ
,

2

ξ
,ξ n32

1  

Tn is linear and bounded and is compact by Theorem 3(a), Further  

  ||(T Tn)x||
2
 = 

2
j2

1nj

2
j

1nj

|ξ|.
j

1
|η|  
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2

2
2

j
1nj

2 )1n(

||x||
|ξ|

)1n(

1
 

Taking the supremum over all x of norm 1, we see that    

      ||T Tn|| .
1n

1
 

Hence Tn T and hence T is compact by the above Theorem 4. 

Theorem 5 :- Let X and Y be normed spaces and T : X Y a compact linear 

operator.  Suppose that <xn> in X is weakly convergent, say, .xx
w

n  Then 

<Txn> is strongly convergent in Y and has the limit y = Tx.  

Proof :- We write yn = Txn and y = Tx.  First we show that  

  yn
w

y.      …(1) 

Then we show that  

yn y       …(2) 

Let g be any bounded linear functional on Y.  We define a functional f on X by 

setting  

  f(z) = g(Tz)   (z X) 

f is linear, f is bounded because T is compact, hence bounded and  

  |f(z)| = |g(Tz)|  ||g|| . ||Tz||  ||g|| . ||T|| . ||z|| 

By definition xn
w

x implies f(xn)  f(x), hence by the definition, g 

(Txn) g(Tx), that is, g(yn) g(y) since g was arbitrary, this implies that 

yn
w

y which proves (1). 

Now we prove (2).  Assume that (2) does not hold.  Then <yn> has a 

subsequence 
kny > such that  

  ||
kny y||        …(3) 

for some  >0.  Since <xn> is weakly convergent, by the result “Let <xn> be a 

weakly convergent sequence in a normed space X, say xn
w

x, then the 

sequence (||xn||) is bounded”.  Thus <xn> is bounded and so is 
knx .  But by 

Theorem 2, “Let X and Y be normed spaces and T : X Y, a linear operator.  

Then T is compact if and only if it maps every bounded sequence <xn> in X 
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onto a sequence <Txn> in Y which has a convergent subsequence”, since the 

operator T is compact, 
knTx > has a convergent subsequence say 

yyHence.yyLet.y
w

jjj .  Since by the result “ Let <xn> be a 

weakly convergent sequence in a normed space X, say xn
w

x, then every 

subsequence of <xn> converges weakly to x”, Thus by this result and (1) we 

have y  = y. consequently  

  || yy || 0 

But  || yyi ||   > 0   [By (3)] 

This contradicts, so that (2) must hold.  

Closed Range Theorem 

Definition:- Suppose X is a Banach space, M is a subspace of X and N is a 

subspace of X* (Dual space of X) , neither M nor N is assumed to be closed. 

Their annihilators M  and N  are defined as follows:  

  M  = {x*  X*, < x, x*> = 0    for all x  M} 

  N  = {x  X , < x, x*> = 0    for all x*  N} 

Thus M  consists of all bounded linear functionals on X that vanish on M and 

N  is the subset of X on which every member of N vanishes. It is clear that M  

and N  are vector spaces. Since M
 
is the intersection of the null spaces of the 

functionals, M  is a weak* closed subspace of X*. 

The weak*-topology of X* is by definition , the weakest one that makes all 

functionals 

  x*  < x, x* > 

continuous. Thus the norm topology of X* is stronger than its weak*-topology. 

 

Notation:- If T maps X into Y, then the null space of T and range of T will be 

denoted by N(T) and (T) respectively 

 

  N(T) = {x  X , T x = 0} 

  (T) = { y  Y ; T x = y  for some x  X}. 

Theorem :- If X and Y are Banach spaces and if T  B(X , Y) [set of bounded 

or continuous linear operator] , then each of the following three conditions 

implies the other two: 

(a) (T) is closed in Y. 

(b) (T*) is weak*-closed in X*. 
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(c) (T*) is norm-closed in X*. 

Proof: It is obvious that (b) implies (c). We will prove that (a) implies (b) and 

that (c) implies (a). 

Suppose (a) holds. Then N(T)  is the weak closure of R(T*).   

To prove (b), it is therefore enough to show that 

  N(T)   (T*)  

Pick x*  N(T) . Define a linear functional  on (T) by  

   T x = < x , x* >  (x  X) 

Note that  is well defined for if T x = T x  , then  x - x   N(T) , hence 

  < x – x  , x* > = 0 

The open mapping theorem applies to  

  T : X  (T) 

since (T)  is assumed to be a closed subspace of the complete space Y and is 

therefore complete. It follows that there exists K <  such that to each              

y  (T) corresponds an x  X with T x = y , || x ||  K || y || and  

  |  y | = |  T x | = | < x , x* > |  K || y || . || x* || 

Thus  is continuous. By the Hahn-Banach theorem some y*  Y* extends . 

Hence 

  < Tx , y* > =  T x = < x , x* >  (x  X) 

This implies x* = T* y*. Since x* was an arbitrary element of N(T)  , we have 

shown that 

  N(T)
 

 (T*) 

Thus (b) follows from (a). 

Suppose next that (c) holds. Let Z be the closure of (T) in Y. Define some S 

 B(X , Z) by setting Sx = Tx. Since (S) is dense in Z. 

Thus   S* : Z*  X* 

is one-to-one. 
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If z*  Z* , then by Hahn-extensions theorem, we get an extension y* of z*, 

for every x  X, 

  < x , T* y* > = < Tx , y* > < Sx , z* > = < x , S* z* >  

Hence S* z* = T* y*. It follows that S* and T* have identical ranges. Since (c) 

is assumed to hold. (S*) is closed , hence complete. 

Apply the open mapping theorem to  

  S* : Z*  (S*) 

Since S* is one to one , the conclusion is that there is a constant c > 0 which 

satisfies 

  c || z* ||  || S* z* ||  

for every z*  Z*.  

Now using the following result 

“Suppose U and V are the open unit balls in the Banach space X and Y , 

respectively. Suppose T  B(X , Y) and C > 0 , 

(a) If the closure of T(U) contains cV , then  

T(U)   cV 

(b) If c || y* ||  || T* y* ||  for every y*  Y* , then 

  T(U)  cV.” 

We have ,  S : X  Z is an open mapping , in particular S(X) = Z. 

But (T) = (S) , by the definition of S. 

Thus (T) = Z , a closed subspace of Y. 

This completes the proof that (c) implies (a). 

 

Definition: An inner product space X  or pre – Hilbert space is a complex 

linear space together with an inner product (,) : X  X  C such that  

(i) (x, y) = ),( xy  [complex conjugate of (y, x)] 

(ii) (  x +  y, z) = (x , z) + (y, z) 

(iii) (x , x)  0 and (x, x) = 0 iff x = 0 

condition (i) clearly reduces to (x, y) = (y, x) if X is real vector space. From (i) 

and (ii), we obtain 

  (x, c y + d z) = ),( xdzcy  
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            = ),( xyc  + ),( xzd  

            = c (x, y) + d (x, z) 

In any pre-Hilbert space, the following are immediate 

(a) (x, y + z ) =  (x, y) + (x, z)  

(b) (x, y) =  (x,y)  

(c) (0, y) = (x, 0) = 0  

(d) (x y, z) =  (x, z)  (y, z)  

Examples 

1. Let C
n
 be the vector space of n tuples. If x = ( 1, 2,….., n) and                           

y = ( 1,….., n) define 

   (x, y) = 
n

k 1

k k 

Then all the axioms for pre – Hilbert space are satisfied. This example is 

known as n – dimensional unitary space and will be denoted by C
n
.   In this 

space, the norm of x is defined by 

 

   || x || = 

2/1

1

2||
n

i

i  

2. Let C(a, b) be the vector space of continuous functions defined on [a, b], a < 

b. Define 

   (x, y) = 
b

a

x(t). )(ty dt 

With respect to this inner product, C[a, b] is a pre- Hilbert space. The norm of 

x in C[a, b] is introduced by taking 

 

   || x || = 

2/1
b

a

2 dt|)t(x|  

3. Let P be the vector space of finitely non – zero sequences. If x = ( k) and y = 

( k), define 

   (x, y) = 
1k

k k 

This space is a pre-Hilbert space with respect to this inner product. The norm 

of x in this space is defined by  
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   || x || = 

2/1

1k

2
k ||  

Theorem 1 : Each Inner Product space is a normed linear space under           

|| x || = (x, x)
1/2

. Since all the properties of norm are satisfied. We notice 

that 

 

(i) || x || = (x, x)
1/2

  0 

(ii) || x || = 0  (x, x) = 0 iff x = 0 

(iii) ||  x ||
2
 = (  x,  x) 

         =  (x, x) 

         = |  |
2
 || x ||

2
 

 ||  x || = |  | || x || 

(iv) For x, y  X, we have 

   || x + y ||
2
 = (x + y, x + y)  (x, x + y) + (y, x + y) 

        = (x, x) + (y, x) + (x, y) + (y, y) 

        = (x, x) + (y, y) + (x, y) + ),( yx  

        = (x, x) + (y, y) + 2 R(x, y)   

         || x ||
2
 + || y ||

2
 + 2 || x || || y || 

        = ( || x || + || y || )
2
    

          || x + y ||  || x || + || y ||   

Therefore, each pre-Hilbert space is a normed linear space.  

Theorem 2 : The Inner product (Scalar Product) is a continuous function with 

respect to norm convergence. (Inner Product in an Hilbert space is jointly 

continuous) 

Proof: If xn  x and yn  y, then the number || xn ||, || yn || are bounded. Let M 

be their upper bound. Then 

   | (xn, yn) – (x, y) | = | (xn, yn) – (xn, y) + (xn, y) – (x, y) | 

        | (xn, yn) – (xn, y) | + | (xn, y) – (x, y) | 

       = | (xn, yn – y ) | + | (xn – x, y) | 
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        || xn || || yn – y || + || xn – x || || y ||  (By 

Schwarz inequality) 

        M || yn – y || + || y || || xn – x || 

Now since || yn – y ||  0 and || xn – x ||  0 as n  , therefore 

 | (xn, yn) – (x, y) |  0 for n    and hence (xn, yn)  (x, y)  

Thus inner product in a pre-Hilbert space is jointly continuous.  

Theorem 3 (Cauchy - Schwarz Inequality): If x and y are any two vectors in 

an inner product space, then 

   | (x, y) |  || x || || y || 

Proof:  We have 

   (x + y, x + y)  0  for arbitrary complex . 

    (x, x + y) + (y, x + y)  0 

    (x, x) + (x, y) + [(y, x) + (y, y)]  0. 

    (x, x) + (x, y) + (y, x) +  (y, y) > 0 

if we put is  = 
),(

),(

yy

yx
, then  

 (x, x) 
)y,y(

)y,x()y,x(
  

)y,y(

)x,y()y,x(
 + 

),(

),(),(

),(

),(

yy

yyyx

yy

yx
  0 

   (x, x)  
),(

|),(| 2

yy

yx
 

),(

),(),(

yy

xyyx
 + 

),(

),(),(

yy

xyyx
  0 

   (x, x)  
),(

|),(| 2

yy

yx
  0 

   | (x, y) |
2
  (x, x) (y, y) 

           = || x ||
2
 . || y ||

2
 

   | (x, y) |  || x || || y || 

Theorem 4 (Parallelogram Law):  In an Hilbert space H, 

 || x + y ||
2
 + || x – y ||

2
 = 2 || x ||

2
 + 2 || y ||

2 
 x, y  H. 
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Proof: Writing out the expression on the left in terms of inner products.  

 || x + y ||
2
 + || x – y ||

2
 = (x + y, x + y ) + (x – y, x – y) 

  = (x, x) + (x, y) + (y, x) + (y, y) + (x, x) – (x, y) – (y, x) + (y, y) 

  = 2(x, x) + 2(y, y) 

  = 2 || x ||
2
 + 2 || y ||

2
 

Polarization Identity 

Theorem 5 : In a pre – Hilbert space, (inner – product space)  

  (x, y) = 
4

1
[|| x + y ||

2
 - || x – y ||

2
 + i ||x + i y||

2
 – i || x – i y ||

2
] 

Proof: we note that  

|| x + y ||
2
 = || x ||

2
 + || y ||

2
 + (x, y) + (y, x)    (1) 

Replace y by –y, iy by  –iy and obtain 

   || x – y ||
2
 = || x ||

2
 + || y ||

2
 – (x, y) – (y, x) 

and 

   || x + iy ||
2
 = || x ||

2
 + || y ||

2
 – i(x, y) + i(y, x) 

   || x – iy ||
2
 = || x ||

2
 + || y ||

2
 + i(x, y) – i(y, x) 

It follows that 

(2) - || x – y ||
2
 = - || x ||

2
 - || y ||

2
 + (x, y) + (y, x) 

(3) i|| x + iy ||
2
 = i|| x ||

2
 + i|| y ||

2
 + (x, y) – (y, x) 

(4) –i|| x – iy ||
2
 = -i|| x ||

2
 – i|| y ||

2
 + (x, y) – (y, x) 

Adding (1), (2), (3) and (4), we get 

      || x + y ||
2
 - || x – y ||

2
 + i || x + i y ||

2
 – i || x – i y ||

2
 = 4 (x, y) 

This completes the proof. 

Definition: A complete pre – Hilbert space (Inner Product space) is called 

Hilbert space. Thus a Banach space whose norm is generated by inner product 

is called Hilbert space.  
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Example: Denote by H, the set of all sequences x = ( k) of complex number 

such that 

   
1k

| k |
2

 <  

If x = ( k) and y = ( k) are sequences belonging to H, then by the 

parallelogram law for complex numbers, 

   | k + k |
2
 + | k - k |

2
 = 2 | k |

2
 + 2 | k |

2
 

Hence  

   
n

k 1

| k + k |
2
  2

n

k 1

| k |
2
 + 2

n

k 1

| k |
2 

for all n. Hence 
n

k 1

| k + k |
2
 <  by the comparison test. Hence the 

sequence ( k + k) belongs to H , that is x + y  H. Furthermore if x = ( k) 

belongs to H and  is a complex number, then 
n

k 1

| k|
2
 = |  |

2
 

n

k 1

| k |
2
 

shows that the sequence (  k) is absolutely summable, it is denoted by  x.   

With respect to the operations x + y and x , H becomes a linear space. We 

also note that if x = ( k) and y = ( k) belong to H, then the series 

   
1k

k k  

converges absolutely. In fact, a and b are real numbers, (a – b)
2
  0 leads to    

ab  
2

1
(a

2
 + b

2
) and in particular, we have 

   | k k |  
2

1
 ( | k |

2
 + | k |

2
 

Thus 
1k

| k k | converges by the comparison test.  

This justifies the definition of the inner product for H as  

   (x, y) = 
1k

k k  

The axioms for a pre – Hilbert space are easily verified. The norm of an 

element x in this space is defined by 
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   || x || = 
2

1

1

2||
k

k
 

It can be seen that 

   ||  x || = |  | . || x || 

and that 

   || x + y ||
2
 + || x – y ||

2
 = 2 || x ||

2
 + 2 || y ||

2
 

Thus to prove that H is a Hilbert space, it is sufficient to show that H is 

complete. 

Suppose x1, x2,….., is a Cauchy sequence in H, that is || xm – xn ||  0 as m, n 

 , say xn = (
n

k ) 

For each k,  |
m

k  - 
n

k |  
1j

| m

j  - n

j |
2
 = || xm – xn ||

2
 

shows that the sequence 
1

k , 
2

k ,….., of k th components is Cauchy.   Since the 

complex numbers are complete, 
n

k   k as n   for suitable k. It will be 

shown that 
1k

| k |
2
 <  and that < xn > converges to x = ( k). 

Let  > 0 be given. Let p be an index such that || xm – xn ||
2
   whenever m, n 

 p. Fix any positive integer r, then we have 

   
r

k 1

|
m

k  - 
n

k |
2
  || xm – xn ||

2
   

provided m, n  p. Letting m  , 

   
r

k 1

| k - 
n

k |
2
   

provided n  p, since r is arbitrary, we get 

   
1k

| k - 
n

k |
2
   whenever n  p  (1) 
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In particular, 
1k

| k - 
p

k |
2
   

Hence the sequence < k - 
p

k > belongs to H. Adding to it, the sequence <
p

k > 

of H, we obtain ( k) = x belongs to H. It follows from (1) that || x – xn ||
2
   

whenever n  p. Thus xn  x and hence H is complete. This Hilbert space of 

absolutely square summable sequences is denoted by l
2
. 

Theorem 6 :  In a pre – Hilbert space, every cauchy sequence is bounded. 

Proof: Let < xn > be a cauchy sequence and let N be an index such that || xn – 

xm ||  1 whenever m, n  N. If n  N, then 

   || xn || = || (x – xN) + xN || 

              || x – xN || + || xN ||   

              1 + || xN || 

Thus if M is the largest of the numbers 1 + || xN ||, || x1 ||, ……., || xN-1 ||, we 

have || xn ||  M for all n. Hence < xn > is bounded. 

Theorem 7: In any pre – Hilbert space, if < xn > and < yn > are Cauchy 

sequence of vectors, then  

{(< xn, yn >)} is Cauchy (hence convergent) sequence of scalars. 

Proof:  By Cauchy – Schwarz inequality 

| (xn, yn) – (xm, ym) | = | (xn – xm, yn – ym) + (xm, yn –ym) + (xn – xm, ym) | 

           | (xn  xm , yn  ym) | + | (xm, yn –ym) | + | (xn – xm, ym) | 

           || (xn – xm ||. || yn – ym || + || xm || . || yn – ym || + || xn - xm ||. || ym || 

for all m and n. Since || xm || and || ym || are bounded. Therefore by the above 

theorem, R. H. S. of the above inequality 0 ad m, n  . Therefore                

{(xn, yn)} is cauchy sequence of scalars and hence convergent. 

Remark: It follows from this theorem, that in a pre – Hilbert space if < xn > is 

a Cauchy sequence, then (xn, xn) and hence || xn || is a cauchy sequence of 

scalars, and hence convergent. 

 

It is clear from the definition that every Hilbert space is a Banach space. We 

shall see that converse need not be true. The question arises under what 

condition, a Banach space will become a Hilbert space. In this direction, we 

have the following result. 
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Theorem 8 : A Banach space is a Hilbert space  ||gm (parallelogram) law 

holds. 

Proof: Let H be a Hilbert space. Thus it is by definition, a Banach space whose 

norm arises from the inner product taken as || x || = (x, x)
1/2

 

Then 

 || x + y ||
2
 + || x – y ||

2
 = (x + y, x + y) + (x – y, x – y) 

              = (x, x) + (y, y) + (x, y) + (y, x) + (x, x) 

        + (y, y) – (x, y) – (y, x) 

    = 2(x, x) + 2(y, y) 

    = 2 || x ||
2
 + || y ||

2
. 

Thus if H is a Hilbert space, then it is a Banach space satisfying || gm law.  

Conversely suppose that H is a Banach space and that in H, ||gm law holds 

good. 

We define an inner product in H by  

   (x, y) = 
4

1
[ || x + y ||

2
 - || x – y ||

2
 ]   (1) 

Then (x, x)  0 and (x, x) = 0  x = 0 Moreover (x, x) = || x ||
2
 and (x, y) = (y, 

x). 

It is only to show that 

   (x1 + x2, y) = (x1, y) + (x2, y) 

and    (  x, y) = (x, y) 

by ||gm law, we note that 

   || u + v + w ||
2
 + || u + v – w ||

2
 = 2 || u + v ||

2
 + 2 || w ||

2
 

and  

   || u – v + w ||
2
 + || u – v – w ||

2
 = 2 || u – v ||

2
 + 2 || w ||

2
. 

so that on substracting. 

   || u + v + w ||
2
 + || u + v – w ||

2
 - || u – v + w ||

2
 - || u – v – 

w ||
2
 

   = 2 || u + v ||
2
 – 2 || u – v ||

2
. 

           (u + w, v) + (u – w, v) = 2(u, v) [using (1)]  

        = (2u, v)   (2) 
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Setting u = w, this implies 

   (2u, v) = 2(u, v) 

Now let x1 = u + w, x2 = u – w and y = v to obtain. 

   (x1, y) + (x2, y) = (x1 + x2, y) [using (2)] 

Similarly 

   (a x, y) = a(x, y) 

Thus a Banach space satisfying ||gm is a Hilbert space. 

Example of a Banach space which is not Hilbert space 

Example 1:  We know that a Banach space is a Hilbert space if and only if 

||gm Law holds. 

Consider the linear space L1 [0, 1] consisting of equivalence classes of 

functions summable on [0, 1] w.r. to Lebesgue measure with the norm of         f 

 L1[0, 1] as 

   || f || = 

1

0

| f(x) | dx     (1) 

L1[0, 1] is a Banach space under this norm. 

We show that this norm does not satisfy || law and thus precludes the 

possibility of viewing this space as a Hilbert space. 

Consider the sets A = [0, 
2

1
] and B = [

2

1
, 1] and the characteristic functions of 

these sets A and B. We note that (1) yields. 

   || A + B ||
2
 = (

1

0

| A + B | )
2 

            = (

2/1

0

| A + B | + 

1

2/1

| A + B | )
2
 

            =  

2

2

1

2

1
= 1

2
 = 1 

             || A + B || = (

1

0

| A + B | )
2
)
1/2
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            = (

2/1

0

| A + B | +  

1

2/1

| A  B | )
2
  

            = 

2

2

1

2

1
 = 1 

But    2|| A ||
2
 +  | B||

2
 = 2

2

2

1
+ 2

2

2

1
= 

2

1
 + 

2

1
 = 1 

   

Thus 

   || A + B ||
2
 + || A - B ||

2
  2 || A ||

2
 + 2 || B ||

2
. 

and therefore ||gm Law is not satisfied and hence L1[0, 1] is not a Hilbert 

space. 

Convex Sets  

Definition: A convex set in a Banach space. B is a non empty subset S such 

that x, y  S  x(1 – t) + t y  S for every real number t satisfying 0  t  1. 

If we put t = 
2

1
, we see that 

   x, y  S  
2

yx
 S. 

Theorem 9 : A closed convex subset C of a Hilbert space H contains a unique 

vector of smallest norm. 

Proof:We know that being convex C is non empty and x, y  C  
2

yx
  C. 

Let d = Inf { ||x ||, x  C }. There exists a sequence {xn} of vectors such that            

|| xn ||  d. By the convexity of C, 
2

xx nn
 is in C. || 

2

xx nn
||  d so               

|| xn + xn ||  2d. By ||gm Law, we have 

 || xm + xn ||
2
 + || xm – xn ||

2
 = 2 || xm ||

2
 + 2 || xn ||

2
 

  || xm – xn ||
2
 = 2 || xm ||

2
 + 2 || xn ||

2
 - || xm + xn ||

2
 

    2 || xm ||
2
 + 2 || xn ||

2
 – 4d

2
 

             2d
2
 + 2d

2
 – 4d

2
 = 0 [|| xn ||  d] as m, n   . 
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Therefore {xn} is a Cauchy sequence in C. Since H is complete and C is 

closed; C is complete and their exists a vector x in C such that xn  x. It is 

clear by the fact that  

 

||x|| = || lim xn || = lim || xn || = d  

that x  is a vector in C with smallest norm. To see that x is unique, suppose that 

x  is a vector in C other than x which also has norm d. Then 
2

'xx
is also in 

C and we have by ||gm law 

 

   || 
2

'xx
||

2
 = 

2

|||| 2x
 + 

2

||'|| 2x
 - || 

2

'xx
||

2
 

          <  
2

|||| 2x
 + 

2

||'|| 2x
 = d

2
 

which contradicts the definition of d. 

 

Orthogonal Complements   

Definition: Two vectors x and y in a Hilbert space H are said to be orthogonal 

written 

   (x  y) if (x, y) = 0 

Since  ),( yx  = (y, x) we have 

x  y   y  x. It is also clear that x  0 for every x. Moreover since (x, x) = || 

x ||
2
, 0 is the only vector orthogonal to itself, 

   if x  y, then 

   || x + y ||
2
 = || x – y ||

2
 = || x ||

2
 + || y ||

2
 

(This is known as Pythagorean theorem). 

Definition: A vector x is said to be orthogonal to a non empty set S (written as 

x  S) if x  y for every y  S. 

Definition: The set of all vectors orthogonal to S is called orthogonal 

complement of S and is denoted by S . 
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Theorem 10 : Let M be a closed linear subspace a Hilbert space H, let x  M, 

and let d be the distance from x to M. Then there exists a unique vector y0 in M 

such that 

   || x – y0 || = d. 

Proof: Let M be a closed linear subspace of H, x  M and d be the distance 

from x to M. Then 

   d = Inf { || x – y ||; y  M } 

Select a sequence {yn} in M such that  
n
lim || xn – yn || = d. Then by 

parallelogram law  

        || ym – yn ||
2
 = || (ym – x) – (yn- x) ||

2  
. 

     = 2 || ym – x ||
2
 + 2 || yn – x ||

2
 

 ||(ym – x)  + (yn – x) ||
2. 

  = 2 || ym – x ||
2
 + 2 || yn – x ||

2
 - || ym + yn – 2x ||

2
 

                         = 2|| ym – x ||
2
 + 2 || yn –x ||

2
 - 4 

2

2
x

yy nm . 

Since 
2

nm yy
  M, we have 

x
yy nm

2
  d. 

Therefore   

  || ym – yn ||
2
  2 || ym – x ||

2
 + 2 || yn  x ||

2
 – 4d

2
 

           2d
2
 + 2d

2
 – 4d

2
 = 0, m, n  . 

Hence {yn} is a Cauchy sequence in a closed linear space of a complete space 

H. 

Therefore  an element y0  M such that 

   y0 = 
n
lim  yn. Also 

   d = 
n
lim || x – yn || = || x – lim yn || 

               = || x – y0 || 
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Uniqueness of y0 :  Suppose y1 and y2 are two vectors in M s. that                    

|| x – y1 || = d and || x – y2 || = d. Then to show that y1 = y2. Since M is a 

subspace of H, therefore 

   y1, y2  M  
2

)( 21 yy
M. 

Hence by the definition of d, we have 

   || x - 
2

21 yy
||  d so that || 2x – (y1 + y2) ||  2d. 

By parallelogram Law, we have 

 ||(x y1)  (x y2)||
2
 = 2||x y1||

2
 + 2||x y2||

2
  ||(x y1) + (x y2)||

2
  

        || y2 – y1 ||
2
 = 2 || x – y1||

2
 + 2 || x – y2 ||

2 
 || 2x – (y1 + y2) ||

2
 

         2d
2
 + 2d

2
 – 4d

2
 = 0 

Thus || y2 – y1||
2
  0. But || y2 – y1||

2
  0 

    || y2 – y1 || = 0  y2 – y1 = 0  y1 = y2. 

Theorem: If M is a proper closed linear subspace of a Hilbert space H, then 

there exists a non zero vector z0 in H such that z0  M.  

Proof: Since M is a proper linear subspace of H, then there is a vector x in H 

which does not belong to M. Let d be distance from x to M. Then (by the above 

theorem) there exists a vector y0 in M such that 

 

   || x – y0 || = d. 

Define z0 = x – y0 

Since d > 0, z0 is a non – zero vector, we shall show that z0  M. It is sufficient 

to show that if y is an arbitrary vector in M  

Then z0  y. 

 

For any scalar , we have 

  || z0   y || = || x – (y0 +  y) ||  d = || z0 || 

    || z0   y ||
2
  || z0 ||

2
  0 

   (z0   y, z0   y)  || z0 ||
2
  0 
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   (z0, z0)  (z0, y)  (y, z0) + (y, y)  || z0 ||
2
  0 

   || z0 ||
2
  (z0, y)  (y, z0) + |  |

2
 || y ||

2
  || z0 ||

2
  0 

    (z0, y)  (y, z0) + |  |
2
 || y ||

2
  0   (1) 

Set  =  (z0, y) for an arbitrary real number . Then (1) becomes 

    2  | (z0, y) |
2
 + 

2
 | (z0, y) |

2
 || y ||

2
  0. 

If we now put a = | (z0, y) |
2
 and  

   b = || y ||
2
, we obtain 

    2  a + 
2
 a b  0 

i.e.   a(  b – 2)  0      (2) 

for all real . However if a > 0, then (2) is obviously false for all sufficient 

small +ve . We see from this that a = 0 i.e. (z0, y) = 0 which implies that          

z0  y Hence the theorem. 

Theorem 12 : If M and N are closed linear subspaces of a Hilbert space H 

such that M  N, then the linear subspace M + N is also closed. 

Proof: Let z be a limit point of M + N. It suffices to show that z  M + N. Let 

< zn > be a sequence of points in M + N such that zn  z. By the assumption 

that M  N, we see that M and N are disjoint, so each zn can be written 

uniquely in the form zn = xn + yn, where xn  M and yn  N. For each  > 0, 

there exists a +ve integer N such that 

   || zm – zn || <   m, n  N( ) 

    || zm – zn ||
2
 < 

2
 

    || (xm + ym – (xn + yn) ||
2
 < 

2
 

    || (xm – xn) + (ym – yn) ||
2
 < 

2
 

    || xm – xn ||
2
 + || ym – yn ||

2
 < 

2
 

    || xm – xn || < ,  || ym – yn || < . 

Thus < xn > and < yn > are Cauchy sequences.  
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But M and N are closed linear subspaces of H and therefore, complete.  Hence 

there exists vectors x and y in M and N respectively such that  

  xn  x and yn  y . Then  

  z = lim zn = lim (xn + yn) =  lim xn + lim yn = x+y  M + N .  

Thus every limit point of M + N is in M + N and hence M + N is also closed.  

Projection Theorem  

Theorem 13.   If M is a closed linear subspace of a Hilbert space H, then  

 H =  M  M  where M  =  The set of all vectors orthogonal to M.  

Proof.   Since M and M  are orthogonal closed linear subspaces of H, by the 

Previous – Theorem, M + M  is also a closed linear subspace of H .  Moreover, 

since M   M  , we have  

M  M  = {0} .  So it is sufficient to show that H =  M + M  .  If this is not so, 

then M + M  is a proper closed linear subspace of H and therefore  a vector z0 

 0 such that z0   (M + M ) which is possible only when z0  M and z0  (M 

+ M  ) that is when z0  M  and z0  M  that is when z0  M
 

 M  .  But 

this is impossible since M   M  = {0} .  Hence H =  M +  M  .  
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UNIT – V  

ORTHONORMAL SETS  

 

Definition: A non empty subset {e1, e2,….,en,….} of H is called orthonormal 

if. 

 (ei, ej) = 
jiif1

jiif0
       Kronoecker Delta ij = 

ji1

ji0
 

Thus orthonormal set consists of mutually orthogonal unit vectors [|| ei || = 1 

for every i ]. 

If H contains only the zero vector, then it has no orthonormal sets. If H 

contains a non – zero vector x and if we normalize x by considering e = 
|||| x

x
, 

then the single element set {e} is clearly an orthonormal set. In general if {xi} 

is a non empty set of orthogonal non – zero vector in H and if xi‟s are 

normalized by replacing each of them by ei = 
|||| i

i

x

x
,Then the resulting set {ei} 

is an orthonormal set.   If should be noted that if < xi > is a non – empty set of 

mutually orthogonal non – zero vectors in H and if in this set, each xi is 

replaced by the corresponding unit vector ei = 
|||| i

i

x

x
, then the resulting set {ei} 

is an orthonormal set. 

Example 1: The subset {e1, e2,…, en} of l n

2  where ei is the n- tuple with 1 in 

the ith place and 0‟s elsewhere, then {e1, e2,…, en} is an orthonormal set in this 

space. 

Example 2: If {en} is a sequence with 1 in the nth place, and zero elsewhere, 

then {e1, e2,…, en} is an orthonormal set in l2. 

Theorem 1 :  Let {e1, e2,…, en} be a finite orthonormal set in a Hilbert space 

H, then 

   
n

i 1

| (x, ei) |
2
  || x ||

2
     (1) 

and further 

   x 
n

i 1

(x, ei) ei  ej     (2) 
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Proof: The inequality (1) follows from the following computation. 

 0  || x 
n

i 1

(x, ei) ei ||
2
  

    = (x 
n

i 1

(x, ei) ei ,      x 
n

1j

(x, ej) ej)  

    = (x, x 
n

1j

(x, ej) ej) 
n

i 1

(x, ei) (ei , x) 
n

1j

(ei, ej) ej)  

    = (x, x 
n

1j

)e,x( j (x, ej) 
n

i 1

(x, ei) [(ei , x 
n

1j

)e,x( j  (x, ej)]  

    = (x, x) 
n

1j

),( jex (x, ej)  
n

1i

(x, ei) (ei, x) 

   + 
n

1i

n

1j

(x, ei) ),( jex (ei, ej)   

     = || x ||
2
  

n

i 1

(x, ei) ),( iex  
n

1j

(x, ej) ),( jex  

    + 
n

1i

n

1j

(x, ei) ),( jex (ei, ej) 

    = || x ||
2
  

n

i 1

 | (x, ei) |
2
 

     
n

i 1

 | (x, ei) |
2
  || x ||

2
 

Also we observe that 

  (x  
n

1i

(x, ei) ei, ej) = (x, ej)  
n

1i

(x, ei) (ei, ej) 

              = (x, ej) – (x, ej) 

              = 0 . 
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Hence 

   x  
n

1i

(x, ei) ei  ej for each j . 

Inequality (1) is called the special case of a more general inequality known as Bessel‟s 

Inequality. 

Theorem 2 : If < ei > is an orthonormal set in a Hilbert space H and if x is any 

vector in H, then the set S = { ei; (x, ei)  0 } is either empty or countable. 

Proof: For each positive integer n, consider the set 

   Sn = {ei ; | (x, ei) |
2
 > 

n

x 2||||
} 

Sn can not contain more than n – 1 vectors, since in that case 
p

1i

|(x, ei) |
2
 > || x 

||
2
 when p > (n – 1) and thus contradicts the above theorem. Also, each member 

of S is contained in 
1n

nS . But union of a countable collection of countable sets 

is countable.  Therefore 
1n

nS  and hence S is countable. 

Bessel’s Inequality  

Theorem 3 : If < ei > is an orthonormal set in a Hilbert space H, then 

   | (x, ei) |
2
  || x ||

2
 

for every vector x  H. 

Proof: Let S = { ei, (x, ei)  0 }. If S is empty, then we define | (x, ei) |
2 

to 

be the number zero and the result is obvious in this case. We now assume that 

S is non – empty. Then by the above theorem, it must be finite or countably 

infinite. If S is finite, then it can be written in the form 

   S = { e1, e2,…., en} 

for some +ve integer n. In this case, we define | (x, ei) |
2
 to be 

n

i 1

| (x, ei) 

|
2
. The inequality to be proved now reduces to  

   
n

i 1

| (x, ei) |
2
  || x ||

2
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which has already been proved. 

Now consider the case 

   S = [ei, (x, ei)  0 ] 

is countably infinite.  

Let the vectors in S be arranged in a definite order. 

   S = [ e1, e2,………,en,……..] 

By the theory of absolutely convergent series, if 
1n

|(x, en)|
2
 converges, then 

every series obtained from it by rearranging its terms and also converges and 

all such series have the same sum.  We, therefore, define  |(x, ei)|
2
 to be 

1

|(x, en)|
2
 and it follows from the above remark that  

1n

| (x, en) |
2
 is a non – 

negative extended real number which depends only on S and not on the 

arrangement of its vectors. We now observe that 

   | (x, ei) |
2
 = 

1i

|(x, ei) |
2
 

               = 
n

lim
 

n

i 1

|(x, ei) |
2
 

                
n

lim
|| x ||

2
 = || x ||

2
 

Hence 

   | (x, ei) |
2
   || x ||

2
 for every x  H. 

Theorem 4 : If < ei > is an orthonormal set in a Hilbert space H, and if x is any 

vector in H, then 

   x  (x, ei) ei  ej 

For each j. 

Proof: we set 

   S = {ei, (x, ei)  0 } 
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when S is empty, we define (x, ei) ei to be the vector zero and then the 

required result reduces to the statement that x – 0 = x is orthogonal to each ej, 

which is precisely, what is meant by saying that S is empty. 

When S is non – empty and finite, then it can be written in the form. 

   S = < e1, e2, ….., en > 

and we define (x, ei) ei to be 
n

i 1

(x, ei) ei and in that case the required 

result reduces to    x  
n

i 1

(x, ei) ei  ej which has already been proved. 

We may assume for the remainder of proof that S is countably infinite. Let the 

vectors in S be listed in a definite order S = < e1, e2,………, en, ……>. We put 

Sn = 
n

i 1

(x, ei) ei and we note that for m > n, we have 

  || Sm – Sn ||
2
 = || 

m

ni 1

(x, ei) ei ||
2
 = 

m

ni 1

| (x, ei) |
2
  || x ||

2
. 

Bessel‟s inequality shows that the series 
1n

| (x, en) |
2
 converges and so < Sn > 

is a Cauchy in H and since H is complete, this sequence converges to a vector 

S, which we write in the form        S = 
1n

(x, en) en. 

We now define (x, ei) ei to be 
1n

(x, en) en (without considering the effect 

of rearrangement) and observe that the required result follows from 

x  
n

i 1

(x, ei) ei  ej and the continuing of the inner product. 

(x  (x, ei) ei, ej) = (x – S, ej) 

            = (x, ej) – (S, ej) 

            = (x, ej) – (lim Sn, ej) 

            = (x, ej) – lim(Sn, ej) 

            = (x, ej) – (x, ej) = 0. 
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All that remains to show that this definition of (x, ei) ei is valid in the 

sense that it does not depend on the arrangement of vectors in S. Let the 

vectors in S be rearranged in any manner; 

   S = { f1, f2,……,fn, ….} 

We put Sn  = 
n

i 1

(x, fi) fi and we see as above that the sequence < fn > 

converges to the limit S , which we write in the form S  = 
1n

(x, fn) fn . We 

conclude the proof by showing that S  equals S. Let  > 0 be given and let n0 

be +ve integer so large that if n  n0, then || Sn – S || < , and || Sn  - S  || <  

and 
1ni 0

| (x, ei) |
2
 < 

2
. For some +ve integer m0 > n0, all terms of 

0n
S occur 

among those of 
0m

'S , so 
0m

'S   
0n

'S  is a finite sum of terms of the form (x, ei) 

ei for e = n0 + 1, n0 + 2,…. This yields || 
0m

'S   
0n

S  ||
2
  

1ni 0

| (x, ei) |
2
 < 

2
 so 

|| 
0m

'S   
0n

'S  || <  and  

        || S  - S ||  || S   
0m

'S  || + || 
0m

'S   
0n

S || + || 
0n

S – S || <  +  +  = 3  

Since  is arbitrary, this shows that S  = S. 

Definition: An orthonormal set E = {ei} in a Hilbert space H is said to be 

complete if the only vector orthogonal to all elements of E is zero. Thus an 

orthonormal set < ei > is complete if there does not exist a single vector which 

is orthogonal to all vectors in E, unless the vector is zero. That is, if it is not 

possible to adjoin a vector e to < ei > in such a way that < ei, e > is an 

orthonormal set which properly contains < ei >. 

Theorem 5 : Every non – zero Hilbert space contains a complete orthonormal 

set. 

Proof: Let H be a non – zero Hilbert space and x  H, x  0. Normalize x by 

writing e = 
|||| x

x
, then clearly < e > is an orthonormal set. It follows therefore 

that every non – zero Hilbert space surely contains orthonormal sets. Consider 

the collection of all possible orthonormal sets in H, then the collection has a 

maximal member M since by Zorn‟s lemma, if P is partially ordered set in 

which every chain has an upper bound, then P possesses a maximal element, 

we shall show that M is complete. Suppose that y  0 and y  M then put 
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   z = 
||y||

y
 

we observe that M  < z > is also an orthonormal set and thus contradicts the 

maximality of M. Hence y  M only if y = 0.  

Theorem 6: Let H be a Hilbert space and let < ei > be an orthonormal set in H. 

Then the following conditions are all equivalent to one another: 

(1) < ei > is complete 

(2) x  < ei >  x = 0. 

(3) If x is any arbitrary vector in H, then x = (x, ei) ei. 

(4) If x is any arbitrary vector in H, then || x ||
2
 = | (x, ei) |

2
 

Proof: (1)  (2), Let < ei > be complete, if (2) is not zero, then  a vector x  

0, such that x  < ei >. Define e = 
|||| x

x
, the vector e(is a unit vector and) is 

then orthogonal to each member of < ei > .  Hence the set obtained by joining e 

to < ei > becomes an orthonormal set containing < ei > {e, ei = 0} becomes an 

orthonormal set containing < ei >. This contradicts the completeness of < ei >.  

Hence         x  < ei >  x = 0 . 

(2)  (3). Suppose that x  < ei >  x = 0. Let x be an arbitrary element in H, 

then x  (x, ei) ei is orthogonal to each ej for all j and therefore to < ei >. 

Therefore (2) implies that x (x, ei)ei = 0 

     x = (x ,ei) ei 

(3)  (4). Suppose that x is an arbitrary vector in H such that x = (x, ei) ei. 

Then by inner product, we have 

   || x ||
2
 = (x, x) = ( (x, ei) ei, (x, ej) ej) 

              = (x, ei) { ),( jex } (ei, ej) 

              = (x, ei) ),( iex  

              = | (x, ei) |
2
.  
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(4)  (1). We are given that if x is an arbitrary vector in H, then 

|| x ||
2
 = | (x, ei) |

2
. Suppose that < ei > is not complete, then it is a proper 

subset of an orthonormal set < ei, e >. Since e is orthogonal to all ei‟s such that 

|| e || = 1, we have  

   || e ||
2
 = | (e, ei) |

2
 = 0 

      e = 0      

this contradicts the fact that e is a unit vector. Hence < ei > is complete. 

Remark: If < ei > is a complete orthonormal set in a Hilbert space H and let x 

be an arbitrary vector in H, then the numbers < x , ei > are called Fourier 

coefficients of x, the expression x = (x, ei) ei is called the Fourier 

expansion of x and equation || x ||
2
 = | (x, ei) |

2
 is called Parseval’s 

equation. 

Example: Consider the Hilbert space L2(0, 2 ). This space consists of all 

complex functions defined on [0, 2 ] which are Lebesgue measurable and 

square integrable in the sense that          

2

0

| f(x) |
2
 dx < . 

Norm and Inner product in L2(0, 2 ) are defined by 

   || f || = (

2

0

|f(x) |
2
 dx )

1/2
 

   (f, g) = 

2

0

f(x) . )(xg dx 

A simple computation shows that the function e
inx

 for n = 0, 1, 2,…. are 

mutually orthogonal in L2. 

 

   

2

0

e
imx

 e
-inx

 dx =    
nmif

nm

2

,0
 

It follows from this that the functions en (n = 0, 1, 2,…..) defined by 

en(x) = e
inx 

/ 2  from an orthonormal set in L2.  For any function f in L2, the 

numbers 
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  Cn = (f, en) = 
2

1
2

0

f(x) e
-inx

 dx    (1) 

are its classical Fourier coefficients and Bessel‟s inequality takes the form. 

   
n

| Cn |
2
  

2

0

| f(x) |
2
 dx. < . 

It is a fact of very great importance in the theory of Fourier series that the 

orthonormal set < en > is complete in L2. As we have seen that for every f in 

L2, Bessel‟s inequality can be strengthened to Parseval‟s equation :  

    
n

| Cn |
2
  = 

2

0

| f(x) |
2
 dx. 

The previous theorem also tells us that the completeness of < en > is equivalent 

to the statement that each f in L2 has a Fourier expansion 

   f(x) = 
2

1

n

Cn e
inx

. 

Gram – Schmide Orthogonalization Process 

Suppose that < x1, x2…….., xn,…..> is a linearly independent set in a Hilbert 

space H. Our aim is to convert it into the corresponding orthonormal set < e1, 

e2,……,en,….> with the property that for each n, the linear subspace of H  is 

spanned by < e1, e2,……, en,…..> 

Our first step is to normalize x1 by putting 

   e1 = 
|||| 1

1

x

x
 

Let us consider x2 – (x2, e1) e1. It is orthogonal to e1 and we normalize this by 

putting 

e2 = 
||),(||

),(

1122

1122

eexx

eexx
 

Now e1 and e2 are orthogonal. Consider x3 – (x3, e1) e1 – (x3, e2) e2. It is 

orthogonal to e1 and e2. We normalize it by 

e2 = 
||),(),(||

),(),(

2231133

2231133

eexeexx

eexeexx
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We see that (e3, e1) = 0, (e3, e2) = 0. Continuing this process, we obtain an 

orthonormal set < e1, e2,…..,en,…..> with the required properties. 

The Conjugate Space H* 

Let H be a Hilbert space and H*, its conjugate space. Let y be a fixed vector in 

H, Define a function fy on H by 

   fy(x) = (x, y)  x  H. 

we assert that fy is linear, for  

   fy(x1 + x2) = (x1 + x2, y)  x1, x2  H 

         = (x1, y) + (x2, y) 

         = fy(x1) + fy(x2) 

and    fy(  x) = (  x, y) 

    = (x, y) = (fy(x)) 

 

Also   | fy(x) | = | (x, y) |  || x || . || y || 

     (By Schwartz‟s Inequality) 

which proves that 

   ||fy ||  || y ||       

which implies that fy is cont. Thus fy is linear and cont. mapping and hence is a 

linear functional on H. On the other hand if y = 0, then 

   fy(x) = (x, 0) = 0  || fy || = || y ||. 

If y  0, then 

   || fy || = sup { | fy(x) | ; || x || = 1} 

          
|||| y

y
f y  

          y
y

y
,

||||
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Hence 

   || fy || = || y || 

Thus for each y  H. There is a linear functional fy  H* such that                               

|| fy || = || y ||. 

Hence the mapping y  fy is a norm preserving mapping of H into H*, 

 Riesz – Representation Theorem for Hilbert spaces 

Theorem 7 : Let H be a Hilbert space and let f be an arbitrary functional in 

H*. Then there exists a unique vector y in H such that  f(x) = (x, y) for every x 

in H. 

Proof: We shall show first that if such a y exists, then it is necessarily unique. 

Let y  be another vector in H such that f(x) = (x, y ). Then clearly (x, y) = (x, 

y ) i.e. (x, y - y ) = 0 for all x in H. Since zero is the only vector orthogonal to 

every vector, this implies that y  y  = 0 which implies that  y  = y.  

Now we turn to the existence of such vector y. If f = 0, then it clearly suffices 

to choose y = 0. We may therefore assume that f  0. The null space                      

M = {x  H; f(x) = 0} is thus a proper closed linear subspace of H and 

therefore there exists a non – zero vector y0 in H which is orthogonal to M. We 

show that if  is a suitably chosen scalar, then the vector y =  y0 meets our 

requirements. If x  M, then whatever values of  may be, we have 

   f(x) = (x,  y0) = 0. 

We now choose x = y0. Then we must have 

   f(y0) = (y0,  y0) = (y0, y0) =  || y0 ||
2
. 

and therefore we must choose our scalar  such that 

    = 
2

0

||||

)(

y

yf
   or    = 

2

0

||||

)(

y

yf
 

Therefore it follows that the vector  y0 = 
2

0

||||

)(

y

yf
. y0 satisfies the required 

condition for each x  M and for x = y0. Each x in H can be written in the form 

x = m +  y0, m  M. For this all that is necessary is to choose  in such a way 

that f(x -  y0) = f(x) -  f(y0) = 0 and this is justified by putting  = 
)(

)(

0yf

xf
. 
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Now we show that the conclusion of the theorem holds for each x in H. For 

this, we have 

 

   f(x) = f(m +  y0) = f(m) +  f(y0) 

     = (m, y) + (y0, y) 

     = (m +  y0, y) = (x, y) 

Remark: It follows from this theorem that the norm preserving mapping of H 

into H* defined by y  fy where fy(x) = (x, y) is actually a mapping of H         

onto H*. 

Remark: It would be pleasant if y  fy were also a linear mapping. This is not 

quite true, however, for 

   
1yf  + 

2yf = 
1yf  + 

2yf  and f y =  fy   (1) 

Also it follows from (1), that the mapping y  fy is an isometry, for 

   || fx – fy || = || fx y || = || x – y ||. 

The Adjoint of an operator 

Let y be a vector in a Hilbert space H and fy its corresponding functional in H*.  

Operate with T* on fy to obtain a functional fz = T* fy and return to its 

corresponding vector z in H. There are three mappings under consideration 

here (H  H*  H*  H) and we are forming their product: 

   y  fy  T* fy = fz  z    (1) 

An operator T* defined on H by 

   T*(y) = z 

is called adjoint of operator T. 

The same symbol is used for the adjoint of T as for its conjugate because these 

two mappings are actually the same if H and H* are identified by means of 

natural correspondence. It is easy to keep track of whether T* signifies the 

conjugate or the adjoint of T by noticing whether it operates on functionals or 

on vectors. 

Let x be an arbitrary vector in H. Then we have 

   (T* fy) (x) = fy(T(x)) = (T(x), y) 

and  

   (T* fy) (x) = fz(x) = (x, z) = (x, T* y) 
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so that 

   (T x, y) = (x, T* y)  for all x and y. 

The adjoint of an operator T is unique, for let T  be another operator on H. such 

that 

   (T x, y) = (x, T  y)  for all x, y  H. 

    (x, T* y) = (x, T  y) 

    (x, T*y  T  y) = 0. 

    T* y - T  y = 0  T* y = T  y   y  H. 

    T* = T  

We now prove that T* actually is an operator on H (all we know so far is that it 

maps H into itself) for any y and z and for all x in H, we have 

 

   (x, T*(  y +  z)) = (T x,  y +  z) 

     = (T x, y) + (T x, z) 

     = (x, T* y) + (x, T* z) 

     = (x,  T* y) + (x,  T* z) 

     = (x,  T* y +  T* z) 

Hence T* is linear. It remains to show that T* is cont. To prove this, we note 

that 

   || T* y ||
2
 = (T* y, T* y) = ( T T* y, y) 

         || T T* y || || y || 

         || T || || T* y || || y || 

which implies that || T* y ||  || T || || y || 

for all y and therefore 

 

   || T* ||  || T || 

Hence T* is cont. It follows therefore that T  T* is a mapping of ß(H) into 

itself. This mapping is called the adjoint operator on ß(H). 
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Theorem 8 :  The adjoint operator T  T* on ß(H) has the following 

properties: 

(1) (T1 + T2)* = T1* + T2* 

(2) (  T)* =  T* 

(3) (T1 T2)* = T2* T1* 

(4) T** = T 

(5) || T* || = || T || 

(6) || T* T || = || T ||
2
 

for all scalars  and T1, T, T2  ß(H). 

Proof: To prove (1), we have 

   (x, (T1 + T2)* y) = ((T1 + T2) x, y) 

        = (T1 x + T2 x, y) 

         = (T1 x, y) + (T2 x, y) 

        = (x, T1* y) + (x, T2* y) 

        = (x, T1* y + T2* y) 

        = (x, (T1* + T2*) y) 

    (T1 + T2)* = T1* + T2* 

(2) If x  H, then 

  (x, (  T)* y) = (  T x, y) 

            = (T x, y) = (x, T* y) 

            = (x,  T* y) = (x, (  T*) y) 

                                (  T)* =  T* 

(3)   (x, (T1 T2)* y) = ((T1 T2) x, y) 



SIGNED MEASURE 185 

    = (T1(T2 x), y) 

    = (T2 x, T1* y) 

    = (x, T2*(T1* y)) 

    = (x, (T2* T1*) y) 

Thus by the uniqueness of adjoint operator. 

   (T1 T2)* = T2* T1* 

(4)    (x, T** y) = (x, (T*)* y) 

         = (T* x, y) 

         = )x,Ty()x*T,y(   

         = (x, T y) 

                        T** = T 

(5) Let y be an arbitrary vector in H. Then 

   || T* y ||
2
 = (T* y, T* y) 

       = (T T* y, y) 

        || T T* y || || y || 

        || T || || T* y || || y || 

    || T* y ||  || T || || y || 

    || T* ||  || T || 

Replacing T be T* in the above inequality, we have 

   || (T*)* ||  || T* || 

      || T ||  || T* || 
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Hence   || T || = || T* || 

(6) To prove this equality, we have 

   || T* T ||  || T* || || T || = || T || || T || [using (5)] 

       = || T ||
2
 

and  

   || T x ||
2
 = (T x, T x) = (x, T* T x) 

      || x || || T* T x || 

      || x || || T* T || || x || 

     = || x ||
2
 || T* T || 

   0,
||||

||||
2

2

x
x

Tx
  || T* T || 

    sup 0,
||||

||||
2

2

x
x

Tx
  || T* T ||  

    || T ||
2
  || T* T ||     (2) 

from (1) and (2) 

   || T* T || = || T ||
2 

 

 

 

 

 

 Self – Adjoint Operator 

 Now we study some special types of operators defined on a Hilbert space. The 

definitions and properties of these operators depend mostly on the properties of 

the adjoint of an operator. 

Definition: An operator A on a Hilbert space  is said to be self – adjoint if it 

equals its adjoint i.e. if A = A*. 
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We know that 0* = 0 and I* = I, so zero and I are self adjoint operator. If  is 

real and A1 and A2 are self – adjoint, we claim that A1 + A2 and  A1 are also 

self – adjoint. We establish these facts in the form of a more general theorem: 

Theorem 9 :  The self adjoint operators in ß(H) form a closed real linear 

subspace of ß(H) and therefore a real Banach space – which contains the 

identity transformation. 

Proof: If A1 and A2 are self – adjoint and if  and  are real numbers, then 

   (  A1 +  A2)* = (  A1)* + (  A2)* 

      =  A1* +  A2* 

      =  A1 +  A2. 

[ Since ,  are real and A1* = A1, A2* = A2 . 

   A1 +  A2 is also self – adjoint. Therefore set of all self – adjoint 

operators A in ß(H) is its linear subspace.  

Further, if < An > is a sequence of self – adjoint operators which converges to 

an operator A, then it can be seen that A is also self – adjoint. In fact 

  || A – A* || = || A – An + An – An* + An* - A* || 

          || A – An || + || An – An* || + || An* – A* || 

         = || A – An || + || (An – A)* || 

         = || A – An || + || An – A || [using || A* || = || A ||] 

         = 2 || An – A ||  0. 

    A – A* = 0 so A = A*. 

Also I* = I. 

Hence the set of all self – adjoint operators in ß(H) form a closed linear 

subspace of ß(H) containing identity transformation and therefore is a real 

Banach space containing the identity transformation. 

Theorem 10 : If A1 and A2 are self – adjoint operators on H, then their product 

A1 A2 is self – adjoint iff A1 A2 = A2 A1. 

Proof: Suppose first that A1 A2 is self – adjoint, then 

   A1 A2 = (A1 A2)* = A2* A1* = A2 A1 
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Conversely suppose that A1 A2 = A2 A1. Then 

   (A1 A2)* = A2* A1* = A2 A1 = A1 A2 

and therefore A1 A2 is self – adjoint.  

Theorem 11 :  If T is an arbitrary operator on H, then T = 0  (T x, y) = 0 for 

all x and y. 

Proof: If T = 0, then (T x, y) = (0 x, y) = (0, y) = 0 for all x, y  H. On the 

other hand if (T x, y) = 0 for all x and y in H, then in particular (T x, T x) = 0 

for all x  H which means that T x = 0 for all x  H and therefore T = 0. 

Theorem 12 : If T is an operator on H, then T = 0 iff (T x, x) = 0 for all x. 

Proof: If T = 0, then 

   (T x, x) = (0 x, x) = (0, x) = 0  x  H. 

Conversely suppose that (T x, x) = 0 for all x  H. We shall show that T = 0 

which holds if (T x, y) = 0 for all x, y  H. So it suffices to prove that (T x, y) 

= 0 for all x, y  H. The proof of this depends on the following identity. 

 (T(  x +  y);  x +  y)  |  |
2
 (T x, x)  |  |

2
 (T y, y) 

             = (T x, y) +  (T y, x)   (1) 

By our hypothesis, the left side of (1) and therefore the right side as well equals 

zero for all  and . If we put  = 1,  = 1 in (1), we get 

   (T x, y) + (T y, x) = 0     (2) 

and if we put  = i and  = 1, we get 

   i(T x, y)   i(T y, x) = 0 

and therefore 

   (T x, y) – (T y, x) = 0     (3) 

Adding (2) and (3), we have 

   (T x, y) = 0 for all x, y  H. 

Hence T = 0. 

Theorem 13 : An operator T on H is self adjoint iff (T x, x) is real for all x.  

Proof: If T is self adjoint, then 

   )x,Tx(  = (x, T x) = (x, T* x) = (T x, x) 
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shows that (T x, x) is real for all x, On the hand, if (T x, x) is real for all x, then 

   (T x, x) = )x,Tx(  = )x*T,x(  = (T* x, x) 

    ((T – T*) x, x) = 0 

    T – T* = 0  T = T* 

Definition: If A1 and A2 are self – adjoint operators on a Hilbert space H, we 

write A1  A2 if (A1 x, x)  (A2 x, x) for all x  H. 

Theorem 14 : The real Banach space of all self – adjoint operators on H is a 

partially ordered set whose linear structure and order structure are related by 

following properties :  

(1) If A1  A2, then A1 + A  A2 + A for every A. 

(2) If A1  A2 then   0, then  A1   A2. 

Proof: Suppose B is the Banach space consisting of all self – adjoint operators 

on H. We define relation  on B by 

  A1  A2 if (A1 x, x)  (A2 x, x)  x  H, A1, A2  B. 

Then 

(i) (A x, x) = (A x, x)  x  H, A  B implies A  A  A  B. Hence  is 

reflexive. 

(ii) If A1, A2  B such that A1  A2 and A2  A1, then 

   A1  A2  (A1 x, x)  (A2 x, x) 

   A2  A1  (A2 x, x)  (A1 x, x) 

Combining these two expressions, we have 

   (A1 x, x) = (A2 x, x) 

    ((A1 – A2)x, x) = 0 A1 – A2 = 0 

    A1 = A2. 

Therefore the relation  is anti – symmetric. 

(iii) Let A1, A2, A3  B such that A1  A2 and A2  A3. Then  

   A1  A2  (A1 x, x)  (A2 x, x) 

   A2  A3  (A2 x, x)  (A3 x, x) 

On both of these yield 
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   (A1 x, x)  (A3 x, x) 

    A1  A3. 

Thus the relation is transitive. 

Hence  is a partially ordered relation. Now we prove the relation (1) and (2) 

(1) A1  A2  (A1 x, x)  (A2 x, x) 

         (A1 x, x) + (A x, x)  (A2 x, x) + (A x, x) 

         (( A1 + A) x, x)  ((A2 + A) x, x) 

         A1 + A  A2 + A 

(2) A1  A2  (A1 x, x)  (A2 x, x) 

          (A1 x, x)   (A2 x, x) 

         (  A1 x, x)  (  A2 x, x) 

         ((  A1) x, x)  ((  A2)x, x) 

          A1   A2     0. 

Hence theorem. 

Positive Operator 

Definition:  A self – adjoint operator A is said to be positive if A  0, i.e. (A x, 

x)  0 for all x.  

It is clear that 0 and I are positive, as are T* T and T T* for an arbitrary 

operator T. 

Theorem 15 : If A is a positive operator on H, then I + A is non – singular.  In 

particular I + T* T and  I + T T* are non – singular for an arbitrary operator T 

on H. 

Proof: We must show that I + A is one to one onto as a mapping of H into 

itself. First of all we observe that 

   (I + A) (x)  x + A x = 0 

    A x = - x  (A x, x) = (-x, x)  0. 

    - || x ||
2
  0  x = 0  x  H. 

Then 

   (I + A) (x) = (I + A)y  (I + A) (x – y) = 0. 
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    x – y = 0  x = y 

    I + A is one – to – one. 

It remains to show that I + A is onto. It is sufficient to prove that range of I + A 

equals H. Let M be the range of I + A. 

Then 

   || (I + A) x ||
2
 = || x + A x ||

2
 = (x + A x, x + A x) 

           = (x, x) + (x, A x) + (A x, x) + (A x, A x) 

           = || x ||
2
 + 2(A x, x) + || A x ||

2
 

       [Since (A x, x) is real] 

            || x ||
2
 

    || x ||
2
  || (I + A) x ||

2
. 

By this inequality and the completeness of H, M is complete and therefore 

closed. Suppose that         M  H. Then  a non – zero vector x0  M such that 

 

   (x0, (I + A) x0) = 0 

    (x0, x0) + (x0, A x0) = 0 

    || x0 ||
2
 + (A x0 , x0) = 0 

    || x0 ||
2
 =  (A x0, x0)  0 

    x0 = 0. 

which contradicts the fact that x0 is a non – zero vector. 

Hence M = H. It follows therefore that I + A is one – to – one and onto and 

hence non – singular.  

 

Normal Operator 

Definition: An operator N on a Hilbert space H is said to be normal if it 

commutes with its adjoint that is N N* = N* N. 
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Theorem 16 : The set of all normal operators on H is a closed subset of ß(H) 

which contains the set of all self – adjoint operator and is closed under scalar 

multiplication. 

Proof: If N is a self – adjoint operator, then 

   N* = N  N N* = N* N. 

Thus it follows that every self – adjoint operator is normal. Therefore the set M 

contains the set of all self – adjoint operators.    

Let  be a scalar and N a normal operator, then 

   (  N) (  N)* = (  N) (  N*) = (N N*) 

              =   (N* N) 

              = (  N*) (  N) 

    = (  N)* (  N) 

Now consider the set M of all normal operators on H. It is clearly a subset of 

ß(H). To show that it is closed, it is sufficient to prove that every Cauchy 

sequence {Nk} of normal operators on H converges to a normal operator. Due 

to the completeness of ß(H) this sequence converges to some operator N we 

shall show that N is normal. Since Nk*  N*, we have 

|| N N*  N* N || = || N N*  Nk Nk* + Nk Nk*  Nk* Nk + Nk* Nk  N* N || 

      ||NN*  NkNk*|| + ||NkNk*  Nk*Nk|| + ||Nk*Nk N*N|| 

     = ||NN*  NkN*|| + ||N*kNk  N*||  0  

     || N N*  Nk N* || + || Nk* Nk ||  N* N ||  0 

which implies that 

   N N* - N* N = 0 

    N N* = N* N 

therefore N is normal. 

Theorem 17 : If N1 and N2 are normal operators on a Hilbert space H with the 

property that either commutes with the adjoint of the other, then N1 + N2 and 

N1 N2 are normal. 
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Proof: We are given that 

   N1 N1* = N1* N1, N2 N2* = N2* N2 

   N1 N2* = N2* N1, N2 N1* = N1* N2 

We show first that N1 + N2 is normal. For this, we have. 

  (N1 + N2) (N1 + N2)* = (N1 + N2) (N1* + N2*) 

               = N1 N1* + N1 N2* + N2 N2* + N2 N1* 

               = N1* N1 + N2* N1 + N1* N2 + N2* N2 

               = (N1* + N2*) (N1 + N2) 

              = (N1 + N2)* (N1 + N2) 

which shows that N1 + N2 is normal.  

Similarly 

   (N1  N2) (N1  N2)* = (N1  N2) (N2* N*1) 

           = N1 (N2 N2*) N1* 

                              = N1 (N2* N2) N1* 

           = (N1 N2*) (N2 N1*) 

           = (N2* N1) (N1* N2) 

           = N2* (N1 N1*) N2 

           = (N2*(N1* N1) N2 

           = (N2* N1*) (N1 N2) 

           = (N1 N2)* (N1 N2) 

    N1 N2 is normal. 

Theorem 18 : An operator on a Hilbert space H is normal if and only if 

   || T* x || = || T x || for every x. 

Proof: T is normal iff 

   T T* = T* T  T T*  T* T = 0 
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    ((T T*  T* T) x, x) = 0  x  H 

   [since an operator T on H is zero iff (T x, x) = 0] 

    (T T* x, x) = (T* T x, x) 

    (T* x, T* x) = (T x, T x) 

    || T* x ||
2
 = || T x ||

2
 

    || T* x || = || T x || 

Theorem 19 : If N is a normal operator on H, then 

   || N
2
 || = || N ||

2
 [by the above theorem] 

Proof: Since N is normal, we have 

   || N* x || = || N x ||  x  H (*) 

    || N
2
 || = sup { || N

2
 x ||; || x ||  1} 

       = sup { || N(N x) ||; || x ||  1} 

       = sup { || N*(N x) ||; || x ||  1} 

       = sup { || N* N x ||; || x ||  1}  

   [By the property of adjoint operation on ß(H)] 

Remark:  For an arbitrary operator T on a Hilbert space, we form 

   A1 = 
2

*TT
,  A2 = 

i2

*TT
 

It can be shown that A1 and A2 are self adjoint and they have the property that 

T = A1 + i A2 

In fact    A1* = 
2

1
(T + T*)* = 

2

1
(T* + T) 

          = 
2

*TT
 = A1  A1 is self – adjoint 

and  A2* = 
i2

1
[ (T – T*)]* = 

i2

1
(T*  T) 



SIGNED MEASURE 195 

          = 
i2

1
(T – T*) = A2 

    A2 is self – adjoint. 

   A1 + i A2 = 
2

*TT
 + 

2

*TT
 =  T 

Also    T* = (A1 + i A2)* = A1*  i A2* 

        = A1*  i A2* = A1 – i A2 . 

A1 and A2 are called real and imaginary parts of T. 

Theorem 20 : If T is an operator on H, then T is normal  its real and 

imaginary parts commute. 

Proof: If A1 and A2 are real and imaginary parts of T so that T = A1 + i A2 and 

   T* = A1 – i A2, then 

  T T* = (A1 + i A2) (A1 – i A2) = A1
2
 + A2

2
 + i(A2 A1 – A1 A2) 

and  T* T = (A1 – i A2) (A1 + i A2) = A1
2
 + A2

2
 + i (A1 A2 – A2 A1) 

It is clear that if A1 A2 = A2 A1 

Then   T T* = T* T 

Conversely T is normal iff T T* = T* T 

    A1 A2 – A2 A1 = A2 A1 – A1 A2 

    2 A1 A2 = 2 A2 A1 

    A1 A2 = A2 A1 . 

Unitary Operator 

Definition: An operator  on H is said to be unitary if  * = *  = I 

Theorem 21 : If T is an operator on H, then the following conditions are all 

equivalent to one another. 

(1) T* T = I 

(2) (T x, T y) = (x, y) for all x and y 

(3) || T(x) || = || x || for all x. 
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Proof: (1)  (2), 

If T* T = I, then 

  (T x, T y) = (x, T* T y) = (x, I y) = (x, y) 

for all x and y 

(2)  (3). If (T x, T y) = (x, y) for all x and y, then taking y = x, we have 

   (T x, T x) = (x, x) = || x ||
2
 

    || T(x) ||
2
 = || x ||

2
 

    || T(x) || = || x ||   x. 

(3)  (1) when || T(x) || = || x || 

    || T(x) ||
2
 = || x ||

2
 

    (T x, T x) = (x, x) 

    (T* T x, x) = (I x, x) 

    (( T* T – I) x, x) = 0  x  M 

    T* T – I = 0  T* T = I. 

Theorem 22 : An operator T on H is unitary iff it is an isometric isomorphism 

of H onto itself. 

Proof: If T is unitary, then we know from the definition that it is onto. 

Moreover since T* T = I, by the previous Theorem. 

   || T(x) || = || x ||   x  H. 

Hence T is an isometric isomorphism of H onto itself. 

Conversely if T is an isometric isomorphism of H onto itself, then T is a one – 

one mapping onto H such that 

|| T(x) || = || x ||  x  H and so by the above theorem, T* T = I 

Since T is an isometric isomorphism of H onto itself, T
-1

 exists and then 

   T* T = I  T* = T
-1

. Also we note that 
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   T T* = T T
-1

 = I 

    T* T = T T* = I  T is unitary. 

 

Projections 

We know that a projection on a Banach space B is an idempotent operator on B 

i.e. an operator P with the property P
2
 = P. It was proved that each projection P. 

determines a pair of closed linear subspaces M and N, the range and null space 

of P such that B = M  N and also conversely that each such pair of closed 

linear subspaces M and N determines a projection P with range M and null 

space N. 

The structure which a Hilbert space H enjoy in addition to being a Banach 

space enables to single out  for special attentions those projections whose range 

and null space are orthogonal. 

We establish the following theorem: 

Theorem 23 : If P is a projection on H with range M and null space N, then M 

 N,  P is self – adjoint and in this case N = M . 

Proof: Since P is projection on a Hilbert space H with range M and null space 

N, we have H = M  N, so each vector z  H can be written uniquely in the 

form z = x + y, x  M, y  N. 

If M  N, then (x, y) = (y, x) = 0. Therefore for all z in H, we have 

   (P* z, z) = (z, P z) = (z, x) = (x + y, x) 

      = (x, x) + (y, x) = (x, x). 

and  

   (P z, z) = (x, z) = (x, x + y) = (x, x) + (x, y) 

    = (x, x) 

    (P* z, z) = (P z, z) 

    [(P*  P) z, z] = 0 

    P*   P = 0  P* = P . 

Conversely suppose that P* = P, to prove that M  N, it is sufficient to show 

that if x and y are arbitrary elements of M and N respectively, then (x, y) = 0.  
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In fact we have, 

  (x, y) = (P x, y) = (x, P* y) = (x, P y) 

                      = (x, 0) = 0. { N is the null space y  N, P(y) = 0} 

   

Hence M  N. 

It remains to prove that if M  N. Then N = M . It is clear that N  M  and if 

N is a proper subset of M  and therefore a proper closed linear subspace of the 

Hilbert space M , there exists a non – zero vector z0 in M  such that z0  N. 

Since z0  M and z0  N and H = M  N. It follows that z0  H. This is 

impossible and hence N = M . 

Definition: A projection on H whose range and null space are orthogonal is 

called a prependicular projection. 

The only projections considered in the theory of Hilbert spaces are those which 

are perpendicular. 

In the light of above theory an operator P on a Hilbert space H is a 

perpendicular projection if P
2
 = P and P* = P. 

Moreover P is  projection on M only if (I – P) is a projection on M . 

Theorem 24 : If P and Q are the projections on closed linear subspaces M and 

N of  H .  

Then M  N  P Q = 0  Q P = 0. 

Proof: If M  N, then N  M . Since Q is a projection on N, Qz is in N for 

each z  H.  

 

Therefore Qz  M   P(Q z) = 0 

            P Q(z) = 0  P Q = 0. 

Moreover taking adjoint, we have 

   P Q = 0  (P Q)* = 0* 

      Q* P* = 0  Q P = 0. 

Hence M  N  P Q = 0  Q P = 0. 

Conversely suppose that Q P = 0 

 P Q = 0, then for x  M or y  N, we have 
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   (x, y) = (P x, Q y) = (x, P* Q y) 

             = (x, P Q y) = (x, 0.y) = (x, 0) = 0. 

Hence M  N. 

Therefore Q P = 0  P Q = 0  M  N. 

Definition: Two projections P and Q are orthogonal if P Q = 0. 

Theorem 25 :  If P1, P2,………, Pn are the projections on closed linear 

subspaces M1, M2,………,Mn of H, then P = P1 + P2 + ……… + Pn is a 

projection   Pi „s are pairwise orthogonal (in the sense that Pi Pj = 0 

whenever i  j) and in this case, P is the projection on M = M1 + M2 + ……… 

+ Mn. 

Proof: Each Pi is a perpendicular projection therefore Pi* = Pi = Pi
2
 for i = 1, 2, 

……, n. 

Then 

P* = (P1 + P2 + ………. + Pn)* = P1* + P2* + …….. + Pn*  

       = P1 + P2 +……….. + Pn = P. 

Hence P is self – adjoint. Now P is a projection  it is idempotent. 

If Pi‟s are pairwise orthogonal, then 

   Pi Pj = 0   for i  j 

Hence  

P
2
 = (P1 + P2 + ……..+ Pn)

2
 

     = 
n

1i

Pi
2

  + 2 
1i

Pi Pj 

     = 
n

i 1

Pi  [Pi
2
 = Pi and  Pi Pj = 0] 

     = P 

 P is idempotent. 

Thus we have proved that if Pi‟s are pairwise orthogonal, then P is a projection. 

To prove the converse we assume that P is idempotent. Let x be a vector in the 

range of Pi so that Pi(x) = x. 

Then 

 || x ||
2
 = || Pi(x) ||

2
  

n

1j

||Pj( x)||
2 

=
n

1j

(Pj x, Pj(x)) = 
n

1j

(Pj x, Pj* x) 
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             = 
n

1j

(Pj
2
 x, x) 

             = 
n

1j

(Pj x, x) 

             = [( P1 + P2 +……..+ Pn) x , x] 

             = (P x, x) = (P
2
 x, x) 

             = (P x, P* x) 

             = (P x, P x) = || P x ||
2
  || x ||

2
 

Since   || x ||
2
 = || P x + (I – P) x ||

2
 

             = || P x ||
2
 + || (I – P) x ||

2
 [Pythagorean theorem] 

                         || P(x) ||
2
  || x ||

2
        

Hence   || x ||
2
  

n

1j

|| Pj(x) ||
2
  || x ||

2
  || x ||

2
 = 

n

1j

|| Pj(x) ||
2
 

  
n

1j

|| Pj x ||
2
 = || Pi (x) ||

2
 = || x ||

2
 [Since || Pi(x) ||

2
 = || x ||

2
] 

which implies that || Pj(x) || = 0 for j  i. 

Now Pj(x) = 0  x  Null space of Pj for j  i. Thus range of Pi is contained in 

the null space of Pj i.e. Mi  Mj  for every i   j and this means that Mi  Mj 

for i  j. Hence [by the preceding theorem] Pi‟s are pairwise orthogonal. 

We now show that P is a projection on M. Firstly we observe that since || P(x) || 

= || x ||  x  Mi, each Mi is contained in the range of P and therefore M 

=
m

i 1

Mi is also contained in the range of P. 

Secondly if x is a vector in the range of P , then 

   x = P x = (P1 + P2 +……….+ Pn) x. 

    = P1 x + P2 x + ……+ Pn x. 
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is evidently in M = 
m

i 1

Mi since Pi x  Mi.  

Hence the theorem. 

Definition: A closed linear subspace M of a Hilbert space H is said to be 

invariant under an operator T on H if T(M)   M. 

If both M and M  are invariant under T, then we say that M reduces T (or that 

T is reduced by M) 

Theorem 26 : A closed linear subspace M of H is invariant under an operator 

T  M  is invariant under T*. 

Proof: Suppose first that M is invariant under an operator T, then T(x)  M for 

all x  M. We shall show that M
 
is invariant under T*. If y is any vector of 

M , 

Then   (x, y) = 0 for all x  M. 

   (x, T* y) =  (T x, y) = 0 since T x  M. 

    T* y  M
 
  for all y y  M

 

Hence M  is invariant under T*. 

Conversely suppose that M  is invariant under T*. Then M  is invariant under 

(T*)* = T**. But M  = M and T** = T, 

Therefore it follows that M is invariant under T. 

Theorem 27 : A closed linear subspace M of H reduces an operator T  M is 

invariant under both T and T*. 

Proof: By definition we know that M reduces T  

  M is invariant under T and M  is invariant under T 

 M is invariant under T and M  is invariant under T* [By previous 

Theorem]. 

 M is invariant under both T and T*. 

Theorem 28 : If P is a projection on a closed linear subspace M of H, then M 

is invariant under an operator T  T P = P T P 
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Proof: If M is invariant under T and x is an arbitrary vector in H, then 

   x  H  P(x)  M T(P(x))  M 

               T P (x)  M 

               P(T P (x)) = T P(x) 

               (P T P) (x) = T P (x) 

               P T P = T P. 

conversely if T P = P T P and x is a vector in M then P(x) = x 

    T(P(x)) = T(x) 

    P T(P(x)) = T(x) 

But P T P (x)  M, therefore T(x)  M. 

Hence M is invariant under T. 

Theorem 29 : If P is the projection on a closed linear subspaces M of H, then 

M reduces an operator T  T P = P T. 

Proof: By a result proved above, M reduces T iff M is invariant under T and 

T* iff T P = P T P and T* P = P T* P 

 T P = P T P and (T* P)* = (P T* P)* 

 T P = P T P and  

 P* T** = P* T** P*  T P = P T P 

And P T = P T P [̀ P* = P and T** = T] 

  T P = P T. 

Reflexivity of Hilbert space 

Let H be a Hilbert space with inner product denoted by (y, x). The dual 

(conjugate space) H* is then a Hilbert space with inner product given by (x*, 

y*) = (y, x) for each x* and y* in H* where x  x* and y  y* under the 

mapping H  H*.  
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We now establish the following result concerning the reflexivity of a Hilbert 

space. 

Theorem 30 : Every Hilbert space is reflexive. 

Proof: Let H* denote the dual space of a Hilbert space H. Consider the 

mapping T defined by 

   T : H  H* 

         y  T y = f    (1) 

where the bounded linear functional f is, for any x  X, given by 

   (T y) (x) = f(x) = (x, y)   (2) 

Suppose now that under T, 

   y1  f1 

and   y2  f2 

and let  y1 + y2  g. 

Thus 

   g(x) = (x, y1 + y2) 

          = (x, y1) + (x, y2) 

          = f1(x) + f2(x) 

and we conclude that 

   T(y1 + y2) = T(y1) + T(y2) 

Showing that T is additive. Now suppose under T, y  f 

And for a scalar , let T(  y) = h , then  

 

   h(x) = (x,  y) = (x, y) =  f(x),    

therefore 

   T(  y) =  T(y) 

Showing that T is conjugate linear. Also, by Riesz – Representation theorem 

for bounded linear functionals on a Hilbert space, to each bounded linear 

function f, there exists a unique y  H such that for every x  H, f(x) = (x, y) 

and || f || = || y ||. In view of this the mapping T is onto and further 

   || f || = || T y || = || y || (y  T y = f) 
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Therefore T is norm – preserving mapping or isometry. As we know that an 

isometry is always a          1 – 1 mapping. 

Thus we have, the mapping T constitutes a 1 – 1 onto isometric, conjugate 

linear mapping from a Hilbert space onto conjugate space. Thus we see that 

Hilbert space and their conjugate spaces are indistinguishable metrically and 

almost indistinguishable algebraically. [ Almost because T is conjugate linear] 

Let x* be a bounded linear functional on H  and x  H. Denote 

x*(x) = [x, x*]. Consider the mapping 

   J : H  H** 

   x  x** 

where for defining equation for Jx we have for any x*  H* 

   x**(x*) = [x*, x**] = [x*, x] = [x, x*] = x*(x) 

 (3) 

we now show that x** is a bounded linear functional. Let x*  X*, then  

   | x**(x*) | = | x*(x) |  | x* || || x || 

   || x** ||  || x ||     (*) 

Further if x = 0, then 

   0  || x** ||  0 . 

And consequently || x** || = || x || = 0 

If x is a non zero vector, then there must be some bounded linear functional x0* 

with norm 1 s. That x0*(x) = || x ||. But 

   || x** || = 
1||*||

sup

x
 | x**(x*) | = 

1||*||

sup

x
 | x*(x) |  

     | x* (x) | = || x ||    (**) 

Thus || x**|| =  ||x|| 

 J is an isometry. Since isometry is always a 1-1 mapping, it follows that J is 

an isomorphism. It remains to show that J is onto.  To this end, let f be an 

element of H**.  We must find z  H such that Jz = f. For T defined in (1) 

consider the functional g defined by 

 

   g : H  f 

   x  )(( xTf  

For x1, x2  H, consider  
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   g(x1 + x2) = )(( 21 xxTf  

         = )( 21 TxTxf  

         = ))(( 1xTf  + ))(( 2xTf  

          = g(x1) + g(x2)    (4) 

    g is additive. 

Now let x  H,   F, then 

   g(  x) = )( xTf  = ))(( xTf   

              = )x(T(f  = . g(x)  

Hence g is linear. 

Further since T is an isometry, we have 

   | g(x) | = | ))(( xTf | = | f(T x) |  || f || || T x || 

       = || f || || x || 

Thus g is bounded. 

By Riesz – Representation Theorem,  z  H such that for all x  H,                 

g(x) = (x, z)  

Or   )(Txf  = (x, z) 

    f(T x) = (z, x)     (5) 

On the other hand by the definition of J and T (using(2) and (3) 

   (J z) (T x) = z ** (T x) = T x(z) = (z, x)  (6) 

Thus (5) and (6) yield that Jz and f agree on every member of H*. Hence they 

are same. This completes the proof. 

Example: Show that a Hilbert space is finite dimensional  every complete 

orthonormal set is a basis. 
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Solution: Let H be a finite dimensional Hilbert space of dimensional n. Let S = 

< ei > be a complete orthonormal set in H. Then we have to show that S is a 

basis for H. Since S is an orthonormal set, therefore it is linearly independent. 

Also S must be a finite set because it can not contain more than n vectors. [ 

Since H is finite dimensional]. Now let x  H. Since S is a complete 

orthonormal set, therefore we have x = 
Sei

(x, ei) ei. Thus each vector x in H 

can be written as linear combination of vectors in the set S and so S generates 

H.  Therefore S is a basis for H. [ Thus in a finite dimensional Hilbert space of 

dimension n every complete orthonormal set must contain exactly n vectors]. 

Conversely suppose that every complete orthonormal set in a Hilbert space H 

is a basis for H. Then to show that H is finite dimensional. Let S be a complete 

orthonormal set in H. Then by hypothesis S is a basis for H. We are to show 

that S is infinite set.  Suppose  is infinite. Then we can certainly extract a 

denumerable sequence of distinct points of S 

   e1, e2, e3,………,en,……….. 

Consider now the series 

   
1

2

1

n n
en. 

Since the series 
1

4

1

n n
 is convergent,  the series 

1
2

1

n n
 en is convergent [ by 

the result that. Let H be a Hilbert space and let S = < e1, e2,……,en,…..> be 

countably infinite orthonormal set in H. Then a series of the form 
1n

n en is 

convergent iff 
1n

| n |
2
 < . 

Thus the series
1

2

1

n n
 en must converge to some vector x in H. Since S is a 

basis for H, therefore we can write x as some finite linear combination of 

vectors in S. Let 

 

   x =  e  + …… +  e  

 

where e ,….. e   S and , ……….,  are scalars. Let j be any +ve integer 

having value different from the values of indices ,………, . We have 

 

   (x, ej) = (  e  + …… +  e , ej) 
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    = (e , ej) + ………. (e , ej) = 0. 

Also (x, ej) = (
1

2

1

n n
 en, ej) [ x = 

1
2

1

n n
 en]  

        = 
2

1

n
    

Thus we have 
2

1

n
 = 0 which is not possible. Therefore the set S must be finite 

and H is finite dimensional. 

Theorem 31 : Prove that any two complete orthonormal sets in a Hilbert space 

H have the same cardinal number. 

Proof: Let S1 and S2 be two complete orthonormal sets in a Hilbert space H. 

Suppose one of these sets is finite. Let S1 be finite and S1 = {e1, e2,………, en}. 

Since S1 is an orthonormal set, therefore it is linearly independent. Also since 

S1 is complete, therefore if x  H, then we have  

   x = 
n

i 1

(x, ei) ei 

Thus S1 generates H. Therefore S1 is a basis for H and so H is finite 

dimensional and dim H = n. Since S2 is also a complete orthonormal set in H, 

therefore S2 must also be a basis for H. Since S1 and S2 are both bases for H, 

therefore they must have the same number of elements. 

Now let us suppose that both S1 and S2 are infinite sets. Let x  S1 and let S2(x) 

= {y: y  S2 and          (y, x)  0}. Then S2(x) is a subset of S2 and thus S2(x) is 

a countable set \. Let z be any arbitrary member of S2. Since S1 is a complete 

orthonormal set and therefore by Parseval‟s identity, we have 

   || z ||
2
 =

1Sx

| (z, x) |
2
 

But z  S2  z is a unit vector. 

Therefore we have 

 

   1 = 
1Sx

| (z, x) |
2
. 

From this relation we see that there must exist some vector x  S1 such that (z, 

x)  0. Then by our definition of S2(x), we have z  S2(x). Thus z  S2  z  

S2(x) for some x  S1. Therefore we have 
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   S2 = 
1Sx

S2(x)     (1) 

Let n1, n2 be the cardinal numbers of S1, S2 respectively. Since the cardinal 

number of the union of an arbitrary collection of sets can not exceed the 

cardinal number of index set, therefore n2  n1. Interchanging the roles of S1 

and S2 we get n1  n2. 

Therefore we have n1 = n2 

Remark: Let S be a complete orthonormal set in a Hilbert space H. Then the 

cardinal number of S is said to be the orthogonal dimension of H. If H has no 

complete orthonormal set i.e. if H is the zero space, then the orthogonal 

dimensional of H is said to be zero. 

Definition: Operators S and T are said to be metrically equivalent if || S x || = || 

T x ||  x  H. 

Theorem 32 : Operators S and T are metrically equivalent if S* S = T* T 

Proof:  Let S and T be metrically equivalent 

   || S x || = || T x ||  x  H. 

    (S*. Sx, x) = (S x, S x) = || S x ||
2
 = || T x ||

2
 

                = (T x, T x) = (T* T x, x) 

    ((S* S – T* T) x , x) = 0 

    S* S – T* T = 0 

    S* S = T* T. 

Theorem 33 : An operator T is normal iff T and T* are metrically equivalent. 

Proof: Suppose T is normal  T* T = T T* 

and so by the above theorem, T* and T are metrically equivalent. 

Conversely suppose that T and T* are metrically equivalent 

 

    || T* x || = || T x || 

    T* T = T T* 

    T is normal. 
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Finite Dimensional Spectral Theory 

First we give basic definitions and results. 

Definition 1: Let T be an operator on a Hilbert space H. A vector x  H is said 

to be a proper vector (eigen-vector , latent vector or characteristic vector) for 

the operator T if (i) x  0 and (ii) Tx = ux for a suitable scalar u. if also Tx = vx 

, then Tx = ux and Tx = vx  implies (u – v) x = 0. Since x  0, it follows that u 

= v. Thus a proper vector x determines uniquely the associated scalar u. 

Definition 2: A scalar u is said to be a proper value (Eigen value , latent root 

or characteristic root(value)) for the operator T in case there exists a non-zero 

vector x such that Tx = ux. 

Thus u is a proper value for T if and only if the null space of T-uI is not equal 

to [0]. 

Remark : If the Hilbert space H has no non-zero vector at all , then T certainly 

has no eigen vectors. In this case the whole theory collapses into triviality. So 

we assume throughout this lesson that H  [0]. 

Theorem 1: If T is a normal operator , x is a vector and u is a scalar , then Tx 

= ux if and only if T*x = u x. In particular  

(1) x is a proper vector for T if and only if it is a proper vector for T*. 

(2) u is a proper value of T if and only if it u is a proper value of T*. 

Proof : By virtue of normality , T*T = TT*. 

Since 

  (T - uI)* = T* u I* = T* u I. 

we have 

  (T  u I)* (T  u I) = (T* u I)  (T  u I) 

         = T*T  uT* u T + u u I 

and 

  (T  u I) (T  u I)* = (T  u I) (T* u I) 

          = TT* u T  u T* + u u I 

Since TT* = T*T , it follows that T - u I is normal. Hence 

  || (T  u I) x || = || (T  u I)* x ||  
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which in turn implies that Tx = u x if and only if T*x = u x. This proves (1) 

and (2). 

Remark : Let H be a classical Hilbert space and x1 , x2 , ….. an orthonormal 

basis for H. Then one sided shift operator T defined by Txk =  xk+1 has no 

proper value. 

Theorem 2: Let T be a normal operator on a Hilbert space H. Then there exists 

on orthonormal basis for H consisting of eigen vectors of T. 

Proof : Let  be an eigen value of T and suppose x is corresponding eigen 

vector. Thus we have Tx = x. Since x can not be zero , we can choose                

x1 = 
|||| x

x
 , If the dimension of H is 1 , then we are done. If not , we will 

proceed by induction. We shall assume that the theorem is true for all spaces of 

dimension less than H and then show that it follows for x from this assumption. 

Letting m = [x1] = [  x1 ,   F]. The space spanned by x1 , we have the 

following direct sum composition of H :     

  H = M  M  . 

We must have then dim M  < dim H. Since x1 is an eigen vector of T , we have 

Tx1 =  x1 and therefore it is clear that M is invariant under T. But we know by 

theorem 1 that eigen vectors of T must also be eigen vectors for T*. Therefore 

M is invariant under T* also. Hence M  is invariant under T** = T. Thus we 

have  

(i) M is invariant under T. 

(ii) M  is invariant under T. 

Thus we can say that M reduces T.  

Consider now the restriction of T to M  denoted by T/M  where T/M  : M   

M . Since T is normal , T/M  is also normal since M  reduces T. Now since 

dim M  < dim H , we can apply the induction hypothesis to assert the existence 

of an orthonormal basis for M  consisting of eigen vector for T/M  ; {x1 , x2 , 

….. , xn}. Eigen vectors of T/M  however must also the eigen vector of T. 

Hence for the entire space , we have (x1 , x2 , ….., xn) as orthonormal basis of 

eigen vectors of T. Hence the result. 

Spectral Theorem for Finite Dimensional spaces 

Definition : The set of eigen values of an operator T is called its spectrum or 

point spectrum and is denoted by (T). 
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Statement of Spectral Theorem  

Let 1 , 2 ,…. , n be the eigen values of an operator T and let M1 , M2 , ….., 

Mn be their corresponding eigen spaces. If P1 , P2 ,….. , Pn are the projections 

on these eigen spaces , then the following three statements are equivalent to 

one another. 

(1) Mi s are pairwise orthogonal and span H. 

(2) Pi s are pairwise orthogonal , that is Pi Pj = 0 for i  j and I = P1 + P2 

+…….+ Pn and also  

  T = 1 P1 + 2 P2 + ……… + n Pn 

(3) T is normal. 

Proof : (1)  (2) , BY (1) every vector x in H can be expressed uniquely in the 

form 

  x = x1 + x2 + ……. + xn  ,    (4) 

where xi  Mi for each i and xi‟s are pairwise orthogonal. Further (1) if Mi  

Mj , i  j then Mj  Mi. Then since Pjx = Mj for every x , we have Pi Pj x = 0 

for any x and Pi Pj = 0 for i  j. This proves that Pi‟s are pairwise orthogonal. 

Applying Pi to both sides of (4) , we have 

  Pi x = Pi x1 + Pi x2 + …….. + Pi xn  

         = 0 + 0 + ……. + Pi xi + …… + 0 

         = xi  for any i. 

Hence we can write any x as  

  x = P1 x + P2 x + ……. + Pn x 

or  I x = P1 x + P2 x + …… + Pn x for identity operator T. 

or  I x = (P1 + P2 + …… + Pn x) x 

Since this is true for any x  H , we conclude that  

  I = P1 + P2 + ……. + Pn . 

Further applying T to x in (4) , we have 

  T x = T x1 + T x2 + …….. + T xn  

         = 1 x1 + 2 x2 + …….+ n xn 
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         = 1 P1 x + 2 P2 x + ……. + n Pn x 

         = ( 1 P1 + 2 P2 + ……. + n Pn) x 

for every x and so 

  T = 1 P1 + 2 P2 + ………. + n Pn     (5)   

The representation (5) for an operator T , when it exists is called the Spectral 

Representation or Spectral form of T. 

(2)  (3) , it follows from  

  T = 1 P1 + 2 P2 + ……. + n Pn 

That  

  T* = 1 P1* + 2 P2 * + ………. + n Pn* 

       = 1 P1 + 2 P2 + …….. + n Pn 

Now since by (2) Pi Pj = 0 for i  j , we have 

  TT* = ( 1 P1 + 2 P2 + …… + n Pn) ( 1 P1 + 2 P2 + …… 

+ n Pn) 

          = | 1 |
2
 P1

2
 + ……… + | n |

2
 Pn

2
  

          = | 1 |
2
 P1 + | 2 |

2
 P2 + ……… + | n |

2
 Pn  

and similarly 

  T*T = | 1 |
2
 P1 + | 2 |

2
 P2 + ……… + | n |

2
 Pn  

and therefore  

  TT* = T*T . 

Proving that T is normal. 

(3)  (1) Suppose that T is normal. 

We shall prove first that Mi  Mj for i  j. Given xi  Mi , xj  Mj , it is 

sufficient to show that         xi  xj. Since xi  Mi , xj  Mj , we have Txi = i xi 

, Txj = j xj . Since T is normal Txj = j xj  T*xj = j xj and so 

  (T xi , xj) = (xi , T* xj) 
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or  ( i xi , xj) = (xi , j xj) 

or  i (xi , xj) = j (xi , xj) 

or  ( i - j) (xi , xj) = 0 

Since i  j , it follows that (xi , xj) = 0 and hence xi  xj. This proves that Mi 

 Mj for i  j and so Mi‟s are pairwise orthogonal. It remains to prove that T is 

normal , then Mi‟s span H that is H = M1 + M2 + …… + Mn. We have just 

shown that Mi‟s are pairwise orthogonal. This implies that Pi‟s are pairwise 

orthogonal. Therefore M = M1 + M2 + …….. + Mn is a closed linear subspace 

of H and its associated projection is P = P1 + P2 + ……… + Pn. Also we know 

that if T is normal , then Mi reduces T.  Therefore T Pi = Pi T for each Pi , it 

follows from this that T P = P T and hence M reduces T and so by definition M 

is invariant under T. If M  (0) , then since all the eigen vectors of T are 

contained in M , the restriction of T to M is an operator (normal) on a non – 

trivial finite dimensional Hilbert space which has no eigen vectors and hence 

no eigen values. But this is a contradiction to the fact that there exists an 

orthonormal basis for H consisting of eigen vectors of normal operator T. 

Hence M = (0) and so M = H and hence H = M1 + M2 + …… + Mn which 

shows that Mi s span H. Hence the result. 

 

 

 


