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SIGNED MEASURE

Unit-I
Signed Measure

Signed Measure

We define a measure as a non-negative set function, we will now allow
measure to take both positive and negative values.

Suppose that p; and i, are two measures, on the same measurable space (X,
B). If we define a new measure piz on (X, B) by setting

LL3(E) =C Hl(E) +C, MQ(E) C,Cr>0.

Then it is clear that us is a measure, thus two measures can be added. This can
be extended to any finite sum.

Another way of constructing new measures is to multiply a given measure by
an arbitrary non-negative constant. Combining these two methods, we see that
if

{ula HZa- (X Mn}

is a finite set of measures and {ou, oo,..., on} is a finite set of non negative real
numbers. Then the set fn p defined for every set E in X by

n
LE=Y ainE
i=1

IS a measure.
Now what happens if we try to define a measure by
VE = LLJ_E — qu

The first thing may occur is that v is not always non-negative and this leads to
the consideration of signed measure which we shall define now. Also we get
more difficulty from the fact that v is not defined when p,E = uE = . For
this reason, we should have either LE or pi:E finite with these consideration in
mind, we make the following definition

Definition :- Let (X, B) be a measurable space. An extended real valued
function, v : B—R defined on the c—algebra B is called a signed measure if it
satisfies the following conditions.
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(1) v assumes at most one of the values +o and —w

(2 v(9)=0

(3) For any sequence {E;} of disjoint measurable sets.
v[[’j € -5 vE
i=1 i-1

the equality here means that the series on the R.H.S. converges absolutely if

v(fj E; j is finite and that it properly diverges otherwise i.e. definitely diverges
i=1

to +o0 Or —c0.

Thus a measure is a special case of signed measure but a signed measure is not
in general a measure.

Definition :- Let (X, B) be a measurable space and let A be a subspace of X.
We say that A is a positive set w.r. to signed measure v if A is measurable and
for every measurable subset E of A we have VE > 0. Every measurable subset
of positive set is again positive and if we take the restriction of v to a positive
set, we obtain a measure. Similarly a set B is called negative if it is measurable
and every measurable subset E of it has a non-positive v measure i.e. VE < 0.

A set which is both positive and negative with respect to v is called a null set.
Thus a measurable set is a null set iff every measurable subset of it has v
measure zero.

Remark :- Every null set have measure zero but a set of measure zero may be
a union of two sets whose measures are not zero but are negatives of each
other. Similarly a positive set is not to be confused with a set which merely
has positive measure.

Lemma 1 :- The union of a countable collection of positive sets is positive.

Proof :- Let A = UA, be the union of a sequence <A,> of positive sets. Let E
be a measurable subset of A. Since A, are measurable, A is measurable and
A,° are measurable. Set

En=En AS ~ AS ... nAS

Then E, is a measurable subset of A, and VE,, > 0. Since the sets E,’s are
disjoint and. E = U E,.

Therefore we have
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VE) = SV(E,)=0.
n=1
Thus we have proved that A = u A, is a measurable set and for every
measurable subset E of A we have V(E) > 0. Hence A is a positive set.

Lemma 2 :- If E and F are measurable sets and v is a signed measure such that
EcF and [vF| <«

Then |V E| < o0.
Proof :- We have vF = v(F-E) + v(E)

If exactly one of the term is infinite then so is v(F). If they are both infinite,
[since v assumes at most one of the values +o and —0.) They are equal and
again infinite.

Thus only one possibility remains that both terms are finite and this proves that
every measurable subset of a set of finite signed measure has finite signed
measure.

Theorem 1 :- Let E be a measurable set such that 0 < VE < «c. Then there is a
positive set A contained in E with vA > 0.

Proof :- If E is a positive set then we take A = E and thus vA = VE > 0 which
proves the theorem.

We consider the case when E is not positive, then it contains sets of
negative measure. Let n; be the smallest positive integer such that there is a

measurable set E; — E with VE; < _ni
1
Now E=(E-E)UE;
and E-E; and E; are disjoint
Therefore VE = v(E-E;) + v(E1)
= V(E-E;) = VE - VE; ..(1)

Since VE is finite (given). It follows that v(E-E;) and VE; are finite.
Moreover VE > 0 and VE; is negative, it follows from (1) that v(E-E;) > 0.
Thus 0<v (E-E;) <.

If E-E; is positive, we can take
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A = E —-E;. Hence the result

Suppose that E-E; is not positive. Then it contains set of negative measure.
Let n, be the smallest positive integer such that there is a measurable set E, —
E-E; with

VE; < —i
N,
2
Now E= |:E—(U Ei):|U(E1UE2)
i=1
2
and E —(U Eij and (E; v E») are disjoint.
i=1

2
Therefore VE = V|:E —(U E; ﬂ + V[E; U Ej]
i=1

= V[E _(6 E, ﬂ: V(E) - V[E1 U E5]

i=1
=V(E) - [VE; + VE;]
=vE - VvE; - VE,

Since VE; and VE; are negative, it follows that

fefpes

2 2
If E—(U E; j IS positive, we can take A = E—[U Ei} and the Theorem is
i=1

established. If it is not so, then it contains sets of negative measures, let n3 be
2
the smallest integer such that there is a measurable set E3 — [E —(U E; ﬂwith
i=1
1 : . : :
VE; <—n— . Proceeding by induction, let ny be the smallest integer for
3
i . k-1
which there is a measurable set Exc E—[U E; } and
i=1
1

VE( < ——
Ny
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If we set A = E—[G Ek}
k=1
..(3)

Then as before
E= Au[['j EKJ
k=1
Since this is a disjoint union, we have
VE = VA + v[['j EkJ
k=1

=VvA + > VE,

<vA—§ i
k=1 nk

Since VE is finite, the series on the R.H.S. converges absolutely. Thus Zni

k
converges and we have n—. Since VEx < 0 and VE > 0, we must have VA >
0.

It remains to show that A is positive set. Let €>0 be given. It is clear from (3)
that A is the difference of two measurable sets and therefore A is measurable.

: . 1 o
Let >0 be given. Since Zn— converges, this implies that ng—c, we may
k
choose k so large that

(nk—l)‘l <e

k
Since ACE—|:U EJ}

x|

A can contain no measurable sets with measure less than — which is

n, -1
greater than —<. Thus A contains no measurable sets of measure less than —<.

Since < is an arbitrary positive number, it follows that A can contain no sets of
negative measure and so must be a positive set.

Definition :- Hahn Decomposition
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A decomposition of X into two disjoint sets A and B such that A is positive
with respect the signed measure v and B is negative with respect the signed
measure v is called a Hahn Decomposition for the signed measure v.

Hahn Decomposition Theorem

Statement :- Let v be a signed measure on the measurable space (X, B). Then
there is a positive set A and a negative set B such that

X=AuBandA~B=¢.

Proof :- Let v be a signed measure defined on the measurable space (X, B).
By definition v assumes at most one of the values +o and —o. Therefore
w.l.0.g. we may assume that +o is the infinite value omitted by v. Let A be the
sup of VA over all sets A which are positive with respect to v. Since the empty
set is positive, A > 0. Let {A;} be a sequence of positive sets such that

A= lim VA,
I—>0
and set A= GAi

Since countable union of positive sets is positive.

Therefore A > VA.
1)

But A — Ajc A and so v(A-A)) > 0.

Since A = (A -Aj) U A

= VA = V(A -A)) + v(A)
> V(A))
Hence VA >\ 2

Thus we have from (1) and (2)
VA=A,
which implies that VA = A and A < .

Let B = A® and let E be a positive subset of B. Then E and A are disjoint and
EUA is a positive set. Hence

A>Vv(EUA)=VE+VA
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=VE + A.
= VE =0 [where 0 <A < o]
Thus B contains no positive subset of positive measure and hence no subset of
positive measure by the previous Lemma. Consequently B is a negative set
and

AnB=¢.

Remark :- The above theorem states the existence of a Hahn decomposition
for each signed measure. Unfortunately, a Hahn-decomposition need not be
unique. Infact, it is unique except for null sets. Forif X=A; U Bjand X = A,
v B, are two Hahn decompositions of X, then we can show that for a
measurable set E,

V(E N A1) =V(EnAY)
and V(E n B;) =Vv(E " By)
To see this, we observe that

En(A1-A)) c(En A
so that VIE (A1 -A)]>0
Moreover En(Ai—-A)cENB;
= VIEN (A1 -A)] <0
Hence VIE "(A1—A2)] =0
and by symmetry

V[E n(A2-A1)] =0
Thus V(E m A1) = V[E n (A1 U A2)] = V[E mn Aj]
Mutually Singular Measures
Definition :- V*(E) =V(E n A)
and v (E) = -v(E n B)

are called respectively positive and negative variations of v. The measure |v|
defined by

IVI(E)=Vv'E+VE

11
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is called the absolute value or total variation of v.

Definition :- Two measures v; and v, on a measurable space (X, B) are said to
be mutually singular if there are disjoint measurable sets A and B with X = A
w B such that

Vi(A) = V2(B) =0

Thus the measures v* and v™ defined above are mutually singular since
vi(B)=v(BNA)=V () =0

and V(A =-v(AnB)=-v($)=0

Jordan Decomposition

Definition :- Let v be a signed measure defined on a measurable space (X, B).
Let  v"and v be two mutually singular measures on (X, B) such that v = v*
—V~. Then this decomposition of v is called the Jordan Decomposition of v.

Since v assumes at most one of values +oo and —oo, either v and v~
must be finite. If they are bot finite, we call v, a finite signed measure. A set E
is positive for vif v- E=0. Itisanull setif |v|(E) = 0.

Definition :- A measure v is said to be absolutely continuous with respect to
measure p if vA = 0 for each set A for which uA = 0. We use the symbol v <
< u when v is absolutely continuous with respect to p.

In the case of signed measures p are v, we say that v < p if [v| < <|u|and v.L p
if

VI L I

Definition :- Let p be a measure and f, a non-negative measurable function on
X. For E in B, set

VE = [f du
E
Then v is a set function defined on B. Also v is countably additive and hence a

measure and the measure v will be finite if and only if f is integrable since the
integral over a set of pu-measure zero is zero.

Jordan Decomposition Theorem

Proposition :- Let v be a signed measure on a measurable space (X, B). Then
there are two mutually singular measures v* and v~ on (X, B) such that v = v* —
Vv~. Moreover, there is only one such pair of mutually singular measure.
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Proof :- Since by definition
V'(E) =V(E N A)
vV (E) =-v(E " B)
V(E) =v(E ~A) + v(E ~ B)
=v' -V
Also v* and v~ are mutually singular since
V'B=V(AB)=v($) =0
vV -A=-v(BA)=-v(p) =0.
where X = A U B.

Since each such pair determines a Hahn decomposition and also we have.
Hahn-decomposition is unique except for null sets. Thus there is only one such
pair of mutually singular measures. Also v takes at most one of the values +w
and —oo implies that at least one of the set functions v* and v~ is always finite.

Radon—Nikodym Theorem

Let (X, B, n) be a o-finite measure space and let v be a measure defined on B
which is absolutely continuous w.rt p. Then there is a non-negative
measurable function f such that for each set E in B, we have

VE=[fdu, EeB.
E

The function f is unique in the sense that if g is any measurable function with
this property, then g = fa.e. in X w.r.t .

Proof :- We first assume that p is finite. Then v—au is a signed measure for
each rational a.. Let (A, B,) be a Hahn-Decomposition for v — ap and take Ag
= X and Bg = ¢.
Nowsince X =As UB,  By=Ag

B, — Bg < B, and is negative

B, — B < Ag and is positive.

Now B.—Bp=Byn Bf=B.nA

13
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Thus (V—au) (Bo—Bp) <0

(v -Bu) (Bo — By) 20

If B >a = wB, — Bp) =0, therefore there is a measurable function f such that
for each rational number o, we have f > o a.e. on A, and f < o a. e on B,
Since By = ¢, we may take f to be non-negative. Let E be an arbitrary set in B
and set

Ex=E m[—Bkﬂ ~ ﬂ}

N N
E.=E~u &
N
Then E=E.u[uUE]

And this is a disjoint union. Hence

VE = VE., + v[U Ey]

=VvE,+ § VEK
K=0
Since Ey = B _ Bk ~E
N N
B C
Thus Ec=E | Bk [ Be
N N

=En %m%} since B, = Ay

Hence Ex hm Ak . we have
N N

% <f< kTJrl on Ex from the above existence of f.
and so

KE <[ s lLE )
ia k—EIk ms—gH B
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Thus we have

and

Now from (2),

Hence

or

k k+1
—uE, <VE, <——nE
NH k k N M Ek

k
NHEkSVEk

k+1
VEk < TM Ek
we have

k
VE, > NuEk

1 k 1
VEx+ —pn Ex> —pnEc+=—pE
k NM k Nllk NMk

= k—HuEk > [fdu
N £

VEg +£M Ex > If du.

jf (]h,LSVEk"'l u Ex
Ek N

Similarly from (3), we have

or

Thus

k+1
VEkS TM Ek

1 k+1 1
VExk—— UuEx< — pEx——nE
k=g RS T BB B

1 k
VEk—— uwEx< —uEr< (fd
k NMk NMk Efk u

VEk—l uEg < J.f du

Combining (4) and (5) we have

)

@)
[from (2)]

(4)
[from (1)]

(®)

15
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VEk—l uEg < J.f CIL,LSVEk'i'l 1 Ex. (6)

On E., we have f =« a.e.

If u E. >0, we must have v E., = .

Since (y —aw) E Is positive for each o.

If u E,, =0, we must have VE., = 0 since v < < .. In either case, we can write

VE.= | fdu @)
Ewo
Thus from (6) and (7), we have
vE—l E<f fd <vE+l E
NHE=] Tdus i

Since p E is finite and N arbitrary, we must have

VE= | fdu.
E

To show that the theorem is proved for c-finite measure u, decompose X into

countable union of Xj's of finite measure. Applying the same argument for
each X;, we get the required function f.

To show the second part, let g be any measurable function satisfying

VE=[ gdu, EcB
E

For each neN

1
define A, = {XEX,f(X)—g(X)ZH}G B

1
and Bn:{XEX,g(X)—f(X)ZH}EB
. 1
Since f(x) —g(x) > HV xeAn

1

- j(F-g)du=uA,

Ap
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By linearity, we have

f fdu- [ gdu==uA,

An An
1
:> VAn_VAnZ_MAn
n
= OzluAn
n
= nwA <0

Since u A, can not be negative, we have
uwA,=0.
Similarly we can show that
uwB,=0
If we take
C={xeX, f(X)zg9(x)} = v {A, U B}
Butp A, =0=p B,
= uC=pA,+uB,=0
= uC =0
Hence f = ga.e w.r.t. measure p.

Remark :- The function f given by above theorem is called Radon-Nikodym

derivative of v with respect to p. It is denoted by [j—ﬂ

Lebesgue Decomposition Theorem

Let (X, B, u) be a o-finite measure space and v a o-finite measure defined on
B. Then we can find a measure v which is singular w.r.to p and a measure v
which is absolutely continuous with respect to p such that v = vo + v where
the measures vp and v; are unique.

Proof :- Since u and v are o-finite measures, so is the measure A = p +v.
Since both p and v are absolutely continuous with respect to A. Then Radon-

17
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Nikodym theorem asserts the existence of non-negative measurable functions f
and g such that for each xcE<B

we=| fdx, vE=[ gdi
E E

Let A = {x; f(x) >0} and B = {x ; f(x) = 0}. Then X is the disjoint union of A
and B while p B = 0. If we define v, by

VoE = V(E m B)
Then VoA=V(A~B)=v($)=0
Since A and B are disjoint.
and so Vol .

Let Vi(E)=v(E~A)= [ gdir

EnA
Vo E + viE = V(EMB) + V(E mA)

=V[(E mB) U (E nA)]

=V[E ~(A UB)]

=V[E n X]

=V(E)
Thus V=Vy+V;
It remains to show that v; < <. Let E be a set of u-measure zero. Then

O=pE=| fd
E

and therefore f =0 a.e. w.r.t. A on E.
Since f >0 on A n E, we must have
AMA nE)=0.Hencev(A~E)=0
and so viE=Vv(A~E)=0
= vi<<pu

Thus v; is absolutely continuous w.r.t. p
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Now to prove the uniqueness of v and v, let vo’ and vy be measures such that
vV = Vg’ + Vi’ which has the same properties as that of measures v and vi. Then

V=Vgo+Vviandv=vy + vy are two Lebesgue decomposition of
V.

Thus Vo— Vo =Vy — Vi
Taking the union of the support sets of vy and vy', we have a set Eq such that
(Vo - Vo') (E) = (Vo —Vo') (E M Eo) and H(Eo) =0

But v;" — vy is absolutely continuous w.r.t. u and therefore zero on Eg since p
Eo = 0. Thus for any measurable set E, we have

(vi' —=v1)E = (Vo — Vo')E

= (Vo — Vo) (E m Ep)

=(vi' —v1) (E n Ep)

=0
since v;’ — vy IS zero on Ey
Thus Vo E =Vo'E
and vi' E=v;E
for all measurable sets E which proves the uniqueness of v and v;.

Remark :- The identity v = vy + v; provided by the preceding theorem (where
Vo is singular w.r.t. p and v; is absolutely continuous with respect to p) is
called the Lebesgue Decomposition of v with respect to p.

Lebesgue-Stieltjes Integral

Let X be the set of real numbers and B the class of Borel sets. A measure p
defined on B and finite for bounded sets is called a Baire measure (on the real
line) to each finite Baire measure, we associate a function F by setting.

F(X) = u(=e, x]

The function F is called the cumulative distribution function of p and is real
valued and monotone increasing we have

n(a b] = F(b) - F(a)

19



20

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS
Since (a, b] is the intersection of the sets
(a, b+ 1}
n
. 1
= u(a, bl = lim u(a,b+—}
n—w n
and so
. 1
F(b) — F(a) = lim {F(b + ﬁ) - F(a)}
N—w
. 1
= F(b) = lim F[b +H] =F(b +)
N—cw
Thus a cumulative distribution function continuous on the right. Similarly

(o) = lim u(b—%,b}

lim [F(b) _ F(b _lﬂ
N—co n

F(b) - F(b-)

Hence F is continuous at b iff the set {b} consisting of b alone has measure
zero.

Since &= (~o0, —n]
= wo = lim p(-eo, —n]

0= lim [F(-n)]

nN—-w
X—>—c0

Since F is monotonic.



SIGNED MEASURE

Thus we have proved that if p is finite Baire measure on the real line, then its
Commulative Distribution function F is a monotone increasing bounded
function which is continuous on the right.

and lim F(x)=0

X—>—c0

Definition :- If ¢ is a non-negative Borel measurable function and F is a
monotone increasing function which is continuous on the right. We define
Lebesgue-Stieltjes Integral of ¢ with respect to F as

[ ¢ dF = ¢ dp.

where p is the Baire measure having F as it cumulative distribution function.
If ¢ is both positive and negative, we say that it is integrable w.r.t F if it is
integrable w.r.t. p.

Definition :- If F is any monotone increasing function then F* is a monotone
increasing function defined by

F*(x) = lim F(y)
y—X+
which is continuous on the right and equal to F where ever F is continuous on
the right. Also

(F*)* = F* and if F and G are monotone increasing functions wherever they
both are continuous, then F* = G*. Thus there is a unique function F*
which is monotone increasing continuous on the right and agrees with F
wherever F is continuous on the right. Then we define L-Stieltjes integral of ¢
w.r.t. F by J¢ dF = [ ¢ dF*,

Proposition :- Let F be a monotone increasing function continuous on the

right. If (a, b] c_['jl (a;, b]. Then
i=

F(b) - F(a) < z [F(b) - F(a)]

Proof :- Write uj; = (a;, b;) and select intervals as follows. Let acwy, say by <
b. Let ko be such that by, € L, etc. By the induction, this sequence comes to

end when b, > b. Renuwhereing the intervals, we have chosen

Uy, Us,..., Uy where

ai+1 <bi<biz,i=1,2,..., m-1

21
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= F(b) - F(a) < F(bm) - F(a1)

szl [F(by) - F(a)]

szl [F(b) - F(a)]

Product Measures

Let (X, S, u) and (Y, 2, v) be two fixed measure spaces. The product semi-
ring Sx2_ of subsets of XxY is defined by

SxY={AxB;AcSand BeX}
The above collection S x X is indeed a semiring of subsets of XxY.
Now define the set function uxv : Sx2.—[0, «o] by

uxv (AxB) = u(A). w(B)
for each A x BeSx}..

This set function is a measure on the product semiring S x ., called the
product measure of p and v. (proof given below)

Theorem :- The set function uxv : Sx>— [0, o] defined by
uxv (AxB) = u(A). v(B)
for each A x B €Sx2’ is a measure

Proof :- Clearly uxv(¢) = 0. For the subadditivity of uxv, let AxBeSx} and
(An x By) be a sequence of mutually disjoint sets of Sx3 such that

AxB= ) A, xBn

n=1

It must be established that
u(A). v(B) = il u(An). v(Br) (%)
n=

Obviously (*) holds if either A or B has measure zero. Thus we can assume
that

u(A) =0 and v(B) = 0.
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Since yaxe = Xa,xB, » We see that
n=1

1) xs(Y) = §1 Xa, (), (V)

holds for all x and y. Now fix yeB.

Since g, (y)equals one or zero, it follows that
Ya(X) = zk xa; (X),where k = {ieN, yeBi}
le

observe that the collection {A;; ick}must be disjoint and thus

u(A) =3 Uu(Aj) holds. Therefore
iek
U(A)- %6(y) = 3 U(A) s, (¥)
()

holds for all yeY. Since a term with u(A,) = 0 does not alter the sum in () or
(**), we can assume that u(A,) = 0 for all n. Now if both A and B have finite
measures, then integrating term by term, we see that (*) holds. On the other
hand if either A or B has infinite measure, then

é U(A,). V(By) = o

must hold. Indeed if the last sum is finite, then u(A)ys(y) defines an integrable

function which is impossible. Thus in this case (*) holds with both sides
infinite. Hence the result.

The next few results will unveil the basic properties of the product measure
uxv. As usual (u xv)* denotes the outer measure generated by the measure
space (X x Y, SxX, uxv) on XxY.

Theorem :- If Ac X and B ¢ Y are measurable sets of finite measure, then
(uxv)* (A x B) = u* x v*(A x B) = u*(A). v*(B)
Proof :- Clearly Sx> c A, x A, holds. Now let {A, x By} be a sequence of
Sx2. such that A x B ¢ 61 (An x Bp). Since by the last theorem, u* x v*is a
ne

measure on the semiring A, x A, , it follows that
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u* x v¥*(AxB) < i u* x v* (An x Bp)
n=1

= i uxv (A, x Bp)
n=1

and so
u* x v* (A x B) < (uxv)* (AxB)

On the other hand, if €>0 is given, choose two sequences {An}c S and
Bl cSwithAc () Ay Bc U Bnsuch that

n=1 n=1

S U(An) < U*(A) +¢ and
n=1

3 V(By) <V*(B) + €.
n=1

But then AxB ¢ fj [.j A, x Bp, holds and so
=1 m=1

>

UxV)* (AxB)< S S uxv (Anx Bp)

n=l m=l
=% 3 u(A). v(Bn)

1 1

S
Il
3

[funf £ e

<[u*(A) +€]. [v*(B) *€]
for all € >0, that is

(uxv)* (A x B) <u*(A). v*(B) = u*xv*(A x B)
Therefore

(uxv)* (A x B) = u*xv* (A x B) holds as required.

Theorem :- If A is a u-measurable subset of X and B, a v-measurable subset of
Y, then A x B is a uxv measurable subset of XxY.

Proof :- Let CxD e SxX with
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uxv(CxD) = u(C). v(D) < .
To establish uxv measurability of AxB, it is enough to show that

(uxv)* ((CxD) ~ (AxB)) + (u xv)* ((CxD) ~(AxB)®) < uxv
(CxD)

If uxv (CxD) = 0, then the above inequality is obvious. So we can assume
u(C) < w and v(D)<w. Clearly

(CxD) n (AxB) = (C mnA) x (D mB)
(CxD) M (AxB)® = [(C ~A®) x (DB)] U [(C ~ A) x (D~ B°)]
U [(C nA%) x (D ~ BY)]

hold with every member of the above union having finite measure. Now the
subadditivity of (uxv)* combined with the last theorem gives

(uxv)* ((CxD) M (AxB)) + (u x v)* ((CxD) n (A x B)®)
<u*(C N A). v¥(D N B) + u*(C nA®). v* (D B)

+U*(C N A). v¥(D ~ B) + u*(C ~ A%). v*(D ~ BY)

[u* (C ~ A) + u*(C ~ A9)]. [V*(D ~ B) + v*(D
BX)]

u(C). v(D)
=uxv (C x D)
as required.

Remark :- In general, it is not true that the measure u* x v* is the only
extension of uxv from S x 3 to a measure on A, x A,. However if both (X, S,

u) and (Y, 2, v) are o-finite measure spaces, then (X x Y, S x X, uxv) is
likewise a o-finite measure space, and therefore u* x v* is the only extension
of uxv to a measure on A, xA, . Moreover since A, xA, < A, and the

fact that (u x v)* is a measure on A, , it follows in this case that (u x v)* = u*
x V¥ holdson A, xA,.

Definition :- If A is a subset of XxY, and xeX, then the x-section of A is
defined by

Ax={yeY; (X,y)cA}

25
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Clearly Ay is a subset of Y. Similarly if yeY, then the y-section of A is
defined by

Ay ={xeX; (x,y) €A}
Clearly Ay is a subset of Y.

Remark :- The following theorem shows that the relation between the uxv
measurable subsets of XxY and the measurable subsets of X and Y.

Theorem :- Let E be a uxv measurable subset of XxY with (u x v)* (E) < o.
Then for u-almost all x, the set Ey is a v-measurable subset of Y, and the
function X—Vv*(Ey) defines an integrable function over X such that

(UxV)* (B) =] V*(E) du(x),
X
(D)

Similarly, for v-almost all y, the set E” is a u-measurable subset of X and the
function y—u* (E”) defines an integrable function over such that

(uxv)* (E) = { u*(E”) dv(y)
.2

Proof :- Due to symmetry of (1) and (2), it is enough to establish the first
formula. The proof goes by steps.

Step | :- Assume E = AxBeSx2.. Clearly Ex =B if xcA and Ex = ¢ if xg A.
Thus Ey is a v-measurable subset of Y for each xe X and

V(Ex) = V(B) xa(X)
..(3)

holds for all xeX.
Since (u x v)* (E) = (u x v) (A x B) =u(A) . v(B) < o, two possibilities arise :

(a) Both A and B have finite measure. In this case (3) shows that x—Vv*(Ey) is
an integrable function (actually, it is a step function). Such that

(b) [ V*(Ex) du(x) =] Vv(B) xa du = u(A). v(B) = (u x v)* (E).

X

(c) Either A or B has infinite measure.
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In this case, the other set must have measure zero and so (3) shows that

V(Ex) = 0 for u-almost all x. Thus x—Vv* (Ex) defines the zero function and
therefore

[ V¥(Ex) du(x) =0 = (uxv)*(E)

X
Step 11 :- Assume that E is a o-set of Sx>.. Choose a disjoint sequence
{E}of Sx¥ suchthat E= |J En. Inview of Ex= [J (E.)yand he preceding
n=1 n=1

step, it follows that Ex is a measurable subset of Y for each xeX. Now define
f(x) = v*(Ex) and

£,00 = 3 V((Ei)y) for each xeX and all n. By step I, each f,
i=1

defines an integrable function and

Jfadu=3 [v((E)y) du(x)

i=1 X
= :zl uxv (Ei) T (uxv)*(E) <
Since {(E)x} is a disjoint sequence of 3., we have
VX(Ey) = é V((En),) and so f,()T(x).,

holds for each xeX. Thus by Levi’s theorem “Assume that a sequence {f,} of
integrable functions satisfies f, < f,., a.e. for all n and lim | f, du < «. Then
there exists an integrable function f such that f, T f a.e. and hence [ f, duT [ f
du holds” f defines an integrable function and

[ V*(Ey) dux =[fdu=lim[f,du

X
=5 uxv (E) = (U xv)* (E)
i=1
Step Il :- Assume that E is a countable intersection of o-sets of finite

measure. Choose a sequence {En} of o-sets such that E = ﬁ En,
n=1

(u x v)* (E1)<oo and Ens1 < Ej, for all n.

For each n, let gh(X) =0 if

27
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V*((En)x) = o0 and gn(x) = v* ((En)y) if
v*((En)y) <. By step Il, each gy is an integrable function over X such that | g,
du = (u x v)* (Ep) holds. In view of Ex = F] (E,), , it follows that E is a v-
n=1

measurable set for each xeX. Also since v*((E1)x)<wo holds for u-almost all x,
it follows that gn(X) = V*((En)x) ¥ V*(E) holds for u-almost all x. Thus x—v*
(Ex) defines an integrable function and

[ V*(Ex) du(x) = lim [ go du = lim (u xv)* (Ep) = (u x v)* (E)
X

Step IV :- Assume that (u xv)* (E) = 0, thus there exists a measurable set G,
which is a countable intersection of o-sets of finite measure such that E < G
and (uxv)* (G) = 0. By step I,

[ v*(Gy) du(X) = (uxVv)*(G)=0

X

and so v*(Gx) = 0 holds for u-almost all x. In view of Ex — Gy for all x, we
must have v*(Ex) = 0 for u-almost all x. Therefore Ey is v-measurable for u-
almost all x and x—Vv*(Ey) defines the zero function. Thus

[ v*(Ex) du(x) =0 = (u x v)* (E).
X

Step V :- The general case. Choose a uxv measurable set F that is a countable
intersection of o&-sets all of finite measure such that E — F and

(uUxVv)*(F)=(uxv)*(E). SetG=F~E.

Then G is a null set and thus by step 1V, v*(Gx) = 0 holds for u-almost all x.
Therefore Ex is v-measurable and v*(Ex) = v*(Fx) holds for u-almost all x. By
step 11 x—>Vv* (Fy) defines an integrable function and so x—v*(Ex) defines an
integrable function and

(UxV)*(E) =(uxVv)*(F) = )[( v*(Fy) d u(x)
= | v*(Ey) dux.
X

holds. The proof of the theorem is now complete.

Definition :- Let f : XxY — R be a function. Then the iterated integral J/f du
dv is said to exist if f is an integrable function over X for v-almost all y and
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the function g(y) = [ f du = [ f(x, y) du(x) defines an integrable function over
X

Y.

If E is a uxv measurable subset of X x Y with (u x v)* (E) < «, then both
iterated integrals [[ye du dv and [fye dv du exist and

[fxe du dv = ffxe dv du = fxe d(u x v)
= (uxVv)*(E)

Since every uxv step function is a linear combination of characteristic
functions of uxv measurable sets of finite measure, it follows that if ¢ is a uxv

step function, then both iterated integrals [f ¢ du dv and [J ¢ dv du exist and
moreover

[fodudv=1[]¢dvdu=pduxv)

The above identities regarding iterated integrals are special cases of a more
general result known as Fubini’s theorem.

Fubini’s Theorem

Let f: XxY — R be uxv integrable function. Then both iterated integrals exist
and

[Jfd (u x v) =[] fdu dv = [ff dv du
holds.

Proof :- Without loss of generality, we can assume that f(x, y) > 0 holds for all
X. Choose a sequence {¢,} of step functions such that

0 < dn(x, y) T f(x, y) holds for all x and y.
Thus
)j( [\j{ dn (X, y) dv (Y)] du(x) = Jon (u x v) T fd(u x v) <
(D
Now by the last theorem, for each n, the function

On(X) = ] (¢n)x dv = \I{ dn(X, y) dv(y)

defines an integrable function over X and clearly gn(x) T holds for u-almost all
Xx. But then by Levi’s Theorem “Assume that a sequence {f,} of integrable
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functions satisfies f, < .1 a.e. for all n and lim [ f, du < co. Then there exists
an integrable function f such that f, T f a.e.”, there exists a u-integrable
function g : X—R such that g,(x) T g(x) u a.e. holds, that is there exists a u-
null subset A of X such that [(¢n)x dv T g(x)<wo holds for all xe A. Since (¢n)x
T f, holds for each x, it follows that f, is v-integrable for all x¢ A and

9n(x) = J(dn)x dvzl on(X, ) dv(y)Tl fx dv

holds for all x¢ A.

Now (1) implies that the function x— | fx dv defines an integrable function
Y

such that
[fd(uxv) = | [j fxdvjdu:ﬂfdvdu
X Y

Similarly, Jf d(u x v) = J| fdu. dv and the proof of the theorem is complete.

Remark :- The existence of the iterated integrals is by no means enough to
ensure that the function is integrable over the product space. As an example of
this sort, consider X =Y =0, 1] u = v = A (the Lebesgue measure) and

_ -y
f(x,y) = X2 y)’ if (x,y) = (0, 0) and

f(0, 0) = 0.

Then

n I
fdudv=——and)) fdvdu=—
] i i A

Fubini’s theorem shows of course that f'is not integrable over [0, 1] x [0, 1]

There is a converse to Fubini’s theorem however according to which the
existence of one of the iterated integrals is sufficient for the integrality of the
function over the product space. This result is known as Tonell’s Theorem and
this result is frequently used in applications.

Measure and Topology

We are often concerned with measures on a set X which is also a topological
space and it is natural to consider conditions on the measure so that it is
connected with the topological structure. There seem to be two classes of
topological spaces for which it is possible to carry out a reasonable theory. One
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is the class of locally compact Hausdorff spaces and other is the class of
complete metric spaces. The present chapter develops the theory for the class
of locally compact Hausdorff spaces.

Baire Sets and Borel Sets

Let X be a locally compact Hausdorff space. Let C¢(X) be the family
consisting of all continuous real-valued functions that vanish outside a compact
subset of X. If f is a real valued function, the support of f is the closure of the
set {x ; f(x) # 0}. Thus C(X) is the class of all continuous real valued
functions on X with compact support. The class of Baire sets is defined to be
the smallest c-algebra B of subsets of X such that each function in C.(X) is
measurable with respect to B. Thus B is the c-algebra generated by the sets
{x; f(x) > o} with f € C¢(X). If o > 0, these sets are compact Gs’s. Thus each
compact Gs is a Baire set. Consequently B is the c-algebra generated by the
compact G,’s

If X is any topological space, the smallest -algebra containing the closed sets
is called the class of Borel sets. Thus if X is locally compact, every Baire set is
a Borel set. The converse is true when X is a locally compact separable metric
space, but there are compact spaces where the class of Borel sets is larger than
the class of Baire sets.

Baire Measure

Let X be a locally compact Hausdorff space. By a Baire measure on X, we
mean a measure defined for all Baire sets and finite for each compact Baire set.
By a Borel measure, we mean a measure defined on the c-algebra of Borel sets
or completion of such a measure.

Definition :- A set E in a locally compact Hausdorff space is said to be

(topologically) bounded if E is contained in some compact set i.e.Eis a
compact. A set E is said to be o-bounded if it is the union of a countable
collection of bounded sets. From now onwards, X will be a locally compact
Hausdorff space.

Now we state a number of Lemmas that are useful in dealing with Baire
and Borel sets.

Lemma 1 :- Let K be a compact set, O an open set with K < O. Then
KcucHczO
where U is a c-compact open set and H is a compact Gs.

Lemma 2:- Every c-compact open set is the union of a countable collection of
compact Gs's and hence a Baire set.
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Lemma 3 :- Every bounded set is contained in a compact Gs. Every o-
bounded set E is contained in a o-compact open set O. If E is bounded, we

may take O to be compact.

Lemma 4 :- Let R be aring of sets and let R” = {E; E eR}. Then either R = R’
orelse R~ R’ =0. Inthe latter case R w R’ is the smallest algebra containing
R. If Ris ao-ring, then R U R’ is a c-algebra.

Lemmab :- If E is a Baire set, then E or E is o-bounded. Both are s-bounded
if and only if X is c-compact.

Lemma 6 :- The class of oc-bounded Baire sets is the smallest c-ring
containing the compact Gs’s.

Lemma 7 :- Each c-bounded Baire set is the union of a countable disjoint
union of bounded Baire sets.

Remark :- The following Proposition gives useful means of applying theorems
about Baire and Borel sets in compact spaces to bounded Baire and Borel sets
in locally compact spaces.

Proposition :- Let F be a closed subset of X. Then F is a locally compact
Hausdorff space and the Baire sets of F are those sets of the form B~F, where
B is a Baire set in X. Thus if F is a closed Baire set, the Baire subsets of F are
just those Baire subsets of X which are contained in F. The Borel sets of F are
those Borel sets of X which are contained in F.

Proof :- Let

R ={ E; E=B~F; Be Ba(X)} where Ba(X) is the class of Baire sets.
Then R is a c-algebra which includes all compact Gs's contained in F. Thus
Ba(F)cR and each Baire set of F is of the form BF. Let

B ={EcX; EnFeBa(F)}. Then

B is a c-algebra. Let K be a compact Gs in X . Then K~F is a closed subset
of K and hence compact. Since Kisa Gs in X, KnF is a Gs in F. Thus K~F is
a compact Gs of F and so is in Ba(F). Consequently Ba(X) < B and so each
Baire set of X interests F in a Baire set of F.

If Fis a closed Baire subset of X, then BAF is a Baire subset of X whenever B
is. Thus each Baire subset of F is of this form. On the other hand for each
Baire subset B of X with B F we have B = B~F and so B is a Baire subset of
F.

Continuous Functions with Compact Support

Let X be a locally compact topological space. If ¢ : X—R and S = {xeX; ¢(x)
# 0}. Then the closure K of S is called the support of ¢. Suppose that ¢ has
support K where K is a compact subset of X. Then ¢ vanishes outside S.
Conversely if ¢ vanishes outside some compact set C and Sc C as C is closed,
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the closure K of S is contained in C, now K is a closed subset of the compact
set C and as such K is compact. Then ¢ has compact support.

Theorem :- Let X be a locally compact Hausdorff space, A and B non-empty
disjoint subsets of X, A closed and B compact. Then there is a continuous

function v : X—[0, 1] C of compact support such that y(x) = 0 for all x in A
and

w(x) =1forall xin B.
First we give some Lemma.

Lemma 1 :- Let X be a Hausdorff space, K a compact subset and peK®. Then
there exists disjoint open subsets G, H such that peG and KcH.

Proof :- To any point x of K, there exist disjoint open sets Ay, By such that
pcAx, XeBx. From the covering {Bx} of K, there is a finite subcovering Bx;,
BX,,..., Bx, and the sets

G=(1A,.H=J B,
i=1 i=1

satisfy the required conditions.
Lemma 2 :- Let X be a locally compact Hausdorff space, K a compact subset,

U an open subset and KcU. Then there exists an open subset V with compact
closure V such that

KcVcV cU.

Proof :- Let G be the open set with compact closure G. If U = X, we simply
take V = G. In general G is too large, the open set G nU is compact as its
closure is a subset of G but its closure may still contain points outside U.

We assume that the complement F of U is not empty. To any point p of F,
there are disjoint open sets G,, H, such that peG,, KcH,. As F NG is

compact, there are points p1, pz,..., pn in F such that Gpl,sz - Gp,, COVer

FNG. We now verify at once that the open set V = Gn
le N..nHp satisfy the conditions of the Lemma 2.

Proof of the theorem :- Let U be the complement of A. According to Lemma
2, there is an open set V3, with compact closure such that

BCVl C\_/l c U,
2 2

and then there are open sets V,, V3 with compact closure such that
4 4
BcV;cVicV; eV V<V cU
4 4 2 2 4 4
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Continuing in this way we obtain open sets V, for each dyadic rational number
r=p/2™in (0, 1) such that

BcV,cV,cU
and

V,cVsforr>s.
(D)

Now we must construct a continuous function v : X—[0, 1]. To this end,
define for each r=p/2" in (0, 1).

wr(X) = rif xeV..
= 0 otherwise

and then y = supy, .
r

It follows at once that 0 <y < 1, that w =0 on A and y = 1 on B. It follows
that , and v are lower semicontinuous. To prove that v is continuous, we
introduce the upper semicontinuous function 6, and 6 defined by

0:(x) =1ifxeV,,
= r otherwise
and 0= 1Info,.
r

It is sufficient to show that y = 6.
We can only have y(X) > 84(x) if r > s xeV, and x¢ V. But this is impossible
by (1), whence v, < 6 for all r, s and so y < 6.

On the other hand, suppose that y(x) < 6(x) then there are dyadic rationals r, s
in (0, 1) such that

y(X) <r<s<0(x).

As y(x) < r, we have x¢ V, and as 6(x) > s we have xe V; which again

contradicts (1). Thus y > 6, combining these inequalities gives y = 6 and
establishes the continuity of .

Hence the result.
Regularity of Measure

Let u be a measure defined on a c-algebra M of subsets of X where X is a
locally compact Hausdorff space. and suppose that M contains the Baire sets.
A set EeM is said to be outer regular for p(or u is outer regular for E) if

uE = Inf {uO : Ec O, open, OcM}
It is said to be inner regular if
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LUE =sup {uK : KcE, K compact, K € M}
The set E is said to be regular for p if it is both inner and outer regular for p.

We say that the measure p is inner regular (outer regular, regular) if it is inner
regular (outer regular, regular) for each set EcM. Lebesgue measure is a
regular measure.

For compact spaces X, there is complete symmetry between inner regularity
and outer regularity. A measurable set E is outer regular if and only if its
complement is inner regular. A finite measure on X is inner regular if and only
if it is outer regular, and hence regular. When X is compact, every Baire
measure is regular.

Remark :- When X is no longer compact, we lose this symmetry because the
complement of an open set need not be compact.

Proposition :- Let u be a finite measure defined on a c-algebra M which
contains all the Baire sets of a locally compact space X. If u is inner regular, it
is regular.

Proof :- Let EcM, then
nE =sup {uK; K cE, KeM and K compact}.
But for each such a K, we have K openand E = K. Hence
HE = uX — nE = Inf{uX - pK3}
=Infu K
> Inf {uO; E c O}
Thus
uE = Inf {uO : E < O; O open and OcM}.

Theorem : - Let p be a Baire measure on a locally compact space X and E a &-
bounded Baire set in X. Then for € >0,

Q) There isa o - compact open set O withEcOand u (O ~E) < .
(i) u E =sup {uK ; KcE, K a compact Gs}.

Proof :- Let R be the class of sets E that satisfy (i) and (ii) for each € > 0.
Suppose E = UE,, where E, €R. Then for each n, there is a c-compact open
set O, with E, — O, and

n(On~E)<2"e. ThenO=U O,
IS again a c-compact open set with
u(O~E)cU(O,~Ey)
and so
wO~E) <> O, ~E)<e
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Thus E satisfies (i)

If for some, n, we have p E, = w, then there are compact Gs's of arbitrary large
finite measure contained in E, < E. Hence (ii) holds for E. If u E, < o for
each n, there is a K, c E,, Kp,, a compact G;s and

WEL~ Ky <2"e
Then

N
nE= SUPM(U Enj
N n=1

N
< Supu(U Knj+e
N n=

Thus E satisfies (ii). If E is a compact Gs, then there is a continuous real
valued function ¢ with compact support such that 0 < ¢ < 1 and E =
{x; ¢(x) =1}. Let Op={x; ¢(x) > 1-1/n}. Then O, is a c-compact open set
with O, compact. Since pO; < o, we have uE = Inf i O,. Thus each compact
G; satisfies (i) and it trivially satisfies (ii)

Let X be compact. Then E satisfies (i) if and only if E satisfies (ii) and so the
collection R of sets satisfying (i) and (ii) is a c-algebra containing the compact
Gs's. Thus R contains all Baire sets and the prop. holds when X is compact.

For an arbitrary locally compact space X and bounded Baire set E, we can take
H to be a compact Gs and U to be a o-compact open subsets of X such that

EcUcCH.
Then E is a Baire subset of H and so
u(W-E)<e

Since W and U are c-compact, so is O = WnU. Thus O is a c-compact open
setwithEc O cW.

O~EcW-E
and
u(O ~E)<e.
Thus E satisfies (i). Therefore all bounded Baire sets are in R.

Since R is closed under countable unions and each o-bounded Baire set is a
countable union of bounded Baire sets, we see that every c-bounded Baire set
belongsto R .

Remark :- If we had defined the class of Baire sets to be the smallest c-ring
containing the compact Gs's and taken a Baire measure to be defined on this c-
ring, then the above theorem takes the form
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“Every Baire measure is regular”. If X is c-compact, the c-ring and the -
algebra generated by the compact Gs's are the same. Hence we have the
following corollary.

Corollary :- If X is o-compact, then every Baire measure on X is regular.

Quasi-Measure :- A measure u defined on c-algebra M which contains the
Baire sets is said to be quasi-regular if it is outer regular and each open set O
€M is inner regular for .

A Baire measure on a space which is not c-compact need not be regular but we
can require it to be inner regular or quasi-regular without changing its values
on the o-bounded Baire sets.

Proposition :- Let pu be a measure defined on a c-algebra M containing the
Baire sets. Assume either that p is quasi-regular or that p is inner regular. Then
for each EcM with pE<wo, there is a Baire set B with

WEAB)=0

Proof :- We consider only the quasi-regular case. Let E be a measurable set of
finite measure. Since p is outer regular, we can find a sequence <O,> of open
sets with

On>o0On1DE
and
pO,<pE+27"
Since p is quasi-regular, there is a compact set K, < O, with
uKp > pOm — 27"
and we may take K, to be a Gs set by Lemma 1. Now
uKm > puOp — 27M > pg-27"
>u0,-2"-2"
Set

Then Hy, is a Baire set, Hn, < O, < O, for m > n. Also Hy © Hpe, and
i Hm = puKy > p0, — 27" 27

Let B=~Hy. Then B is a Baire set, B — O, and
uB =1lim p Hp,

Thus
uB > pno, - 27",
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Since B < O, and E Oy, we have
BAEc(0,~B) u(O,~E)
and so
w(B AE) <w(On~B)+ uwOn~E)
<2"+2"=2"
This is true for any n and so
uw(B AE)=0.

Proposition :- Let p be a non-negative extended real valued function defined
on the class of open subsets of X and satisfying

(i) L O < o if O compact.
(i) pO1<p0yifO; O,
(iii) L O1u0)=p O+ 0, if 01 NOz=4¢.
(iv) pUO)<Xn0;
(v) 1 (0)==sup{nU; UcO, Ucompact}
Then the set function p* defined by
uw*E = Inf {n O; ECO}
is a topologically regular outer measure.

Proof :- The monotonicity and countable subadditivity of u* follow directly
from (ii) and (iv) and the definition of pu*. Also u*O = O for O open and so
condition (ii) of the definition of regularity follows from hypothesis (iii) of the
proposition and the condition (i) from the definition of pu*. Since p O < « for

O compact, we have u* E <o for each bounded set E.
Riesz-Markov Theorem

Let X be a locally compact Hausdorff space. By C.(X), we denote as usual, the
space of continuous real valued functions with compact support. A real valued
linear functional I on C.(X) is said to be positive if I(f) > 0 whenever f > 0.
The purpose of the following theorem is to prove that every positive linear
functional on C(X) is represented by integration with respect to a suitable
Borel (or Baire) measure. In particular we have the following theorem :

Statement of Riesz-Markov Theorem

Let X be a locally compact Hausdorff space and | a positive linear functional
on C¢(X). Then there is a Borel measure p on X such that

I(f) =/ fdu
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For each feC(X). The measure pu may be taken to be quasi-regular or to be
inner regular. In each of these cases it is then unique.

Proof :- For each open set O definet O by
1 O =sup {I(f); feC(X), O <f <1, sup fc O}

Then p is an extended real valued function defined on all open sets and is

readily seen to be monotone, finite on bounded sets and to satisfy the regularity
(v) of the above Proposition. To see that p is countably subadditive on open

sets, let O = UO; and let f be any function in C¢(X) with O<f<land
sup f < O. Thus there are non-negative functions ¢i, ¢o,..., dn In Cc(X) with
sup ¢;i < O; and

onsupf. Thenf=3 ¢if, 0 <¢if<land
sup (¢i f) = O;. Thus

=3 I(hiH< 3 5O,

i=1 i=1

Taking the sup over all such f gives

™5

Il
[N

HOS ﬁOi

and p is countably subadditive.

IfO=0,00,withO; " O, =¢and f; € C¢(X),0<fi<landsupfic
O;, then the functionf=f; + f, hassupfc Oand 0 <f< 1. Thus

Ifi+1f, < EO

Since f; and f, can be chosen arbitrarily, subject to 0 < f; < 1 and sup fi < O;,
we have

ﬁ01+ HOQS HO,
whence
rO1+ p0O,=pn0

Thus p satisfies the hypothesis of the above proposition so p extends to a
quasi-regular Borel measure.
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We next proceed to show that If = | f du for each feC¢(X). Since f is the
difference of two non-negative functions in C¢(X), it is sufficient to consider
f>0. By linearity we may also take f <1.

Choose a bounded open set O with sup f — O. Set
Ok = {x; nf(x) > k-1}
and O, = O. Then Opsy = ¢ and O,,; — Ok.

1 in O
Define dk=<nf(x)—k+1 in Oy -0
0 in O,
1 n
Then f==>" d«
nia

We also have sup ¢x = O, — Oy_; and
dx =1 0on Os1. Thus
I O0w1 < Iy < IOy
fork > 1.
Also
Ok < ok dt < O
fork > 1.
Hence

—u0; < Zn: (Ipx — Jo) < L Op + L Os
k=1

Consequently
11— ffdu| < % e

since n is arbitrary,
If = [fd T

Thus there is an inner regular Borel measure p which agrees with @ on the

c-bounded Borel sets. Since only the values of u on c-bounded Baire sets
enter into Jf du, we have

If = [ f du.

The unicity of @ and p is obvious.
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Measure and Topology

We are often concerned with measures on a set X which is also a
topological space and it is natural to consider conditions on the measure so
that it is connected with the topological structure. There seem to be two
classes of topological spaces for which it is possible to carry out a
reasonable theory. One is the class of locally compact Hausdorff spaces
and other is the class of complete metric spaces. The present chapter
develops the theory for the class of locally compact Hausdorff spaces.

Baire Sets and Borel Sets

Let X be a locally compact Hausdorff space. Let C¢(X) be the family
consisting of all continuous real-valued functions that vanish outside a
compact subset of X. If f is a real valued function, the support of f is the
closure of the set {x ; f(x) # 0}. Thus C.(X) is the class of all continuous
real valued functions on X with compact support. The class of Baire sets
is defined to be the smallest o©-algebra B of subsets of X such that each
function in C¢(X) is measurable with respect to B. Thus B is the c-algebra
generated by the sets {x; f(x) > a} with f € C¢(X). If a > 0, these sets are
compact Gs’s. Thus each compact Gs is a Baire set. Consequently B is the
c-algebra generated by the compact G,’s

If X is any topological space, the smallest c-algebra containing the closed
sets is called the class of Borel sets. Thus if X is locally compact, every
Baire set is a Borel set. The converse is true when X is a locally compact
separable metric space, but there are compact spaces where the class of
Borel sets is larger than the class of Baire sets.

Baire Measure

Let X be a locally compact Hausdorff space. By a Baire measure on X, we
mean a measure defined for all Baire sets and finite for each compact
Baire set. By a Borel measure, we mean a measure defined on the o-
algebra of Borel sets or completion of such a measure.

Definition :- A set E in a locally compact Hausdorff space is said to be

(topologically) bounded if E is contained in some compact set i.e.Eis a
compact. A set E is said to be o-bounded if it is the union of a countable
collection of bounded sets. From now onwards, X will be a locally
compact Hausdorff space.

Now we state a number of Lemmas that are useful in dealing with
Baire and Borel sets.

Lemma 1 :- Let K be a compact set, O an open set with K < O. Then
KcucHcO
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where U is a o-compact open set and H is a compact Gs.

Lemma 2:- Every c-compact open set is the union of a countable collection
of compact Gs's and hence a Baire set.

Lemma 3 :- Every bounded set is contained in a compact Gs. Every o-
bounded set E is contained in a g-compact open set O. If E is bounded, we
may take O to be compact.

Lemma 4 :- Let R be a ring of sets and let R’ = {E; E eR}. Then either R =
R’ or else R mn R’ =0. In the latter case R u R’ is the smallest algebra
containing R. If Ris a o-ring, then R U R’ is a c-algebra.

Lemma 5 :- If E is a Baire set, then E or E is o-bounded. Both are o-
bounded if and only if X is o-compact.

Lemma 6 :- The class of c-bounded Baire sets is the smallest o-ring
containing the compact Gs's.

Lemma 7 :- Each c-bounded Baire set is the union of a countable disjoint
union of bounded Baire sets.

Remark :- The following Proposition gives useful means of applying
theorems about Baire and Borel sets in compact spaces to bounded Baire
and Borel sets in locally compact spaces.

Proposition :- Let F be a closed subset of X. Then F is a locally compact
Hausdorff space and the Baire sets of F are those sets of the form BnF,
where B is a Baire set in X. Thus if F is a closed Baire set, the Baire
subsets of F are just those Baire subsets of X which are contained in F.
The Borel sets of F are those Borel sets of X which are contained in F.

Proof :- Let

R ={ E ; E = BnF; Be Ba(X)} where Ba(X) is the class of Baire
sets. Then R is a c-algebra which includes all compact Gs's contained in
F. Thus Ba(F)cR and each Baire set of F is of the form B~F. Let

B ={EcX ; E~FeBa(F)}. Then

B is a c-algebra. Let K be a compact Gs in X . Then KnF is a closed
subset of K and hence compact. Since K is a Gs in X, KnF is a Gs in F.
Thus KnF is a compact Gs of F and so is in Ba(F). Consequently Ba(X)
B and so each Baire set of X interests F in a Baire set of F.

If F is a closed Baire subset of X, then BF is a Baire subset of X
whenever B is. Thus each Baire subset of F is of this form. On the other
hand for each Baire subset B of X with Bc F we have B = BAF and so B is
a Baire subset of F.

Continuous Functions with Compact Support
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Let X be a locally compact topological space. If ¢ : X—>R and S = {xeX;
¢(x) = 0}. Then the closure K of S is called the support of ¢. Suppose that
¢ has support K where K is a compact subset of X. Then ¢ vanishes
outside S. Conversely if ¢ vanishes outside some compact set C and Sc C
as C is closed, the closure K of S is contained in C, now K is a closed subset
of the compact set C and as such K is compact. Then ¢ has compact
support.

Theorem :- Let X be a locally compact Hausdorff space, A and B non-
empty disjoint subsets of X, A closed and B compact. Then there is a
continuous function y : X—[0, 1] C of compact support such that y(x) =0
for all x in A and

y(x) =1 for all x in B.
First we give some Lemma.

Lemma 1 :- Let X be a Hausdorff space, K a compact subset and peK®.
Then there exists disjoint open subsets G, H such that peG and KcH.

Proof :- To any point x of K, there exist disjoint open sets Ay, By such that
peAy, XxeByx. From the covering {By} of K, there is a finite subcovering
Bx;, Bxy,..., Bx, and the sets

G:ﬁAXi, H:Lnj By
i=1 i=1

satisfy the required conditions.
Lemma 2 :- Let X be a locally compact Hausdorff space, K a compact

subset, U an open subset and KcU. Then there exists an open subset V
with compact closure V such that

KcVcVcU.

Proof :- Let G be the open set with compact closure G. If U = X, we simply
take V = G. In general G is too large, the open set G U is compact as its
closure is a subset of G but its closure may still contain points outside U.

We assume that the complement F of U is not empty. To any point p of F,
there are disjoint open sets Gp, H,, such that peG,, KcHp. As F NG s
compact, there are points p;, Pze..., pn IN F such that

GIO1 ,GID2 ,...,GIOn cover FAG. We now verify at once that the open set V =
G le N...nHp satisfy the conditions of the Lemma 2.

Proof of the theorem :- Let U be the complement of A. According to
Lemma 2, there is an open set V1, with compact closure such that

BcV,; cV; c U,
2 2
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and then there are open sets V;, V3 with compact closure such that
4 4

BcV;cVicV, VeV, eV, cU
4 4 2 2 4 4

Continuing in this way we obtain open sets V, for each dyadic rational
number r = p/2™in (0, 1) such that

BcV,cV,cU
and

V,cVforr>s.
o.(1)

Now we must construct a continuous function y : X—[0, 1]. To this end,
define for each r =p/2™in (0, 1).

yr(X) = rif xeV,.
= 0 otherwise
and then y = supy, .

r

It follows at once that 0 <y <1, that yw=0o0n A and y =1 on B. It follows
that y, and y are lower semicontinuous. To prove that w is continuous,
we introduce the upper semicontinuous function 6, and 6 defined by

0r(x) = 1ifxe V,,
= r otherwise
and 0= 1Info,.
r

It is sufficient to show that y = 6.
We can only have wy.(x) > 05(x) if r > s xeV, and x¢ V. But this is
impossible by (1), whence y, <0, for all r, s and so y <0.

On the other hand, suppose that y(x) < 6(x) then there are dyadic
rationals r, s in (0, 1) such that

y(X) <r<s<o(x).
As y(x) < r, we have x¢ V, and as 6(x) > s we have xe V; which again

contradicts (1). Thus y > 6, combining these inequalities gives v = 6 and
establishes the continuity of .

Hence the result.
Regularity of Measure
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Let u be a measure defined on a c-algebra M of subsets of X where X is a
locally compact Hausdorff space. and suppose that M contains the Baire
sets. A set EcM is said to be outer regular for p(or p is outer regular for

E) if
uE = Inf {uO : Ec O, open, OcM}
It is said to be inner regular if
uE =sup {uK : KcE, K compact, K € M}
The set E is said to be regular for p if it is both inner and outer regular for
W

We say that the measure p is inner regular (outer regular, regular) if it is
inner regular (outer regular, regular) for each set EcM. Lebesgue
measure is a regular measure.

For compact spaces X, there is complete symmetry between inner
regularity and outer regularity. A measurable set E is outer regular if and
only if its complement is inner regular. A finite measure on X is inner
regular if and only if it is outer regular, and hence regular. When X is
compact, every Baire measure is regular.

Remark :- When X is no longer compact, we lose this symmetry because
the complement of an open set need not be compact.

Proposition :- Let p be a finite measure defined on a c-algebra M which
contains all the Baire sets of a locally compact space X. If p is inner
regular, it is regular.

Proof :- Let EcM, then
nE =sup {pK; K cE, KeM and K compact}.
But for each such a K, we have K openand E « K. Hence
HE = pX — nE = Inf{pX — pK}
=Infp K
> Inf {uO; E — O}
Thus
pE = Inf {uO : E c O; O open and OesM}.

Theorem : - Let u be a Baire measure on a locally compact space X and E a
o-bounded Baire setin X. Then for € >0,

(ili)  Thereisa o - compact open set O with EcOand u (O ~E) < .
(iv) pE=sup{uK; KcE, Kacompact Gs}.
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Proof :- Let R be the class of sets E that satisfy (i) and (ii) for each € > 0.
Suppose E = UE,, where E, €eR. Then for each n, there is a c-compact
open set O, with E, O, and

w(On~Ey)<2™e. ThenO=U O,
IS again a c-compact open set with
u(O~E)cU(O,~E)
and so
WO~E) <X wOn~En<e
Thus E satisfies (i)

If for some, n, we have p E, = o, then there are compact Gy's of arbitrary
large finite measure contained in E, — E. Hence (ii) holds for E. If u E, <
o for each n, there is a K, c Ep, K, a compact Gs and

u(En -~ Kn) < 2_n€
Then

N
nE= Sgpu(u Enj

n=1
N

< Supu(U Knj+e
N n=1

Thus E satisfies (ii). If E is a compact Gs, then there is a continuous real
valued function ¢ with compact support such that 0 < ¢ <1 and E = {X;
d(x) = 1}. Let O = {x ; ¢(x) > 1-1/n}. Then O, is a c-compact open set
with O, compact. Since pO; < o, we have uE = Inf p O,. Thus each
compact G satisfies (i) and it trivially satisfies (ii)

Let X be compact. Then E satisfies (i) if and only if E satisfies (ii) and so
the collection R of sets satisfying (i) and (ii) is a c-algebra containing the
compact Gg's. Thus R contains all Baire sets and the prop. holds when X
is compact.

For an arbitrary locally compact space X and bounded Baire set E, we can
take H to be a compact Gs and U to be a g-compact open subsets of X such
that

EcUCcCH.
Then E is a Baire subset of H and so
u(W-E)<e

Since W and U are o-compact, so is O = WnU. Thus O is a c-compact
opensetwithEc O cW.
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O~EcW-E
and
u(O ~E) <e.
Thus E satisfies (i). Therefore all bounded Baire sets are in R.

Since R is closed under countable unions and each c-bounded Baire set is
a countable union of bounded Baire sets, we see that every c-bounded
Baire set belongsto R .

Remark :- If we had defined the class of Baire sets to be the smallest c-ring
containing the compact Gs's and taken a Baire measure to be defined on
this o-ring, then the above theorem takes the form

“Every Baire measure is regular”. If X is c-compact, the o-ring and the
c-algebra generated by the compact Gs's are the same. Hence we have the
following corollary.

Corollary :- If X is c-compact, then every Baire measure on X is regular.

Quasi-Measure :- A measure p defined on c-algebra M which contains the
Baire sets is said to be quasi-regular if it is outer regular and each open set
O eMis inner regular for p.

A Baire measure on a space which is not c-compact need not be regular
but we can require it to be inner regular or quasi-regular without
changing its values on the c-bounded Baire sets.

Proposition :- Let u be a measure defined on a c-algebra M containing the
Baire sets. Assume either that p is quasi-regular or that p is inner regular.
Then for each EcM with pE<ow, there is a Baire set B with

wEAB)=0

Proof :- We consider only the quasi-regular case. Let E be a measurable
set of finite measure. Since p is outer regular, we can find a sequence
<Op> of open sets with

0no>0On1DE
and
pnO,<pE+2"
Since p is quasi-regular, there is a compact set K, ¢ O, with
pKm > pOm — 27"
and we may take K, to be a Gs set by Lemma 1. Now
pKm > pOm— 2" > pE-2""
>u0,-2"-2"
Set
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Then Hy, is a Baire set, Hy, c O, < O, for m > n. Also Hy, © Hme1, and
wHm>pKyn > po, - 27" -2

Let B=~Hy. Then B is a Baire set, B c O, and
uB =lim pHy

Thus
uB > po, - 27",

Since B — O, and E — O, we have
BAEcC(0O,~B)u(On~E)

and so
(B AE) <u(On~B) +p(On~E)

< 2—n + 2—n — 2—n+1

This is true for any n and so

u(B AE)=0.

Proposition :- Let pu be a non-negative extended real valued function
defined on the class of open subsets of X and satisfying

(vi) 1O <wif Ocompact.
(vii) pO;1<u0,if O; <O,
(viii) H (O1u0O)=u O1+ 0O, if O1 Oy =¢.
(ix) pUO)<XHO;
(x) [ (0)==sup{uU; UcO, Ucompact}
Then the set function p* defined by
uw*E = Inf {n O; ECO}
is a topologically regular outer measure.

Proof :- The monotonicity and countable subadditivity of u* follow directly
from (ii) and (iv) and the definition of p*. Also u*O = p O for O open and
so condition (ii) of the definition of regularity follows from hypothesis (iii)
of the proposition and the condition (i) from the definition of u*. Since
O < for O compact, we have p* E <o for each bounded set E.

Riesz-Markov Theorem
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Let X be a locally compact Hausdorff space. By C.(X), we denote as usual,
the space of continuous real valued functions with compact support. A
real valued linear functional 1 on C.(X) is said to be positive if I(f) > 0
whenever f > 0. The purpose of the following theorem is to prove that
every positive linear functional on C.(X) is represented by integration with
respect to a suitable Borel (or Baire) measure. In particular we
have the following theorem :

Statement of Riesz-Markov Theorem

Let X be a locally compact Hausdorff space and | a positive linear
functional on C.(X). Then there is a Borel measure pon X such that

I(f) = fdu

For each feC,(X). The measure p may be taken to be quasi-regular or to
be inner regular. In each of these cases it is then unique.

Proof :- For each open set O defineu O by
1O =sup {I(f); feC(X), O <f <1, sup fc O}

Then p is an extended real valued function defined on all open sets and is

readily seen to be monotone, finite on bounded sets and to satisfy the
regularity (v) of the above Proposition. To see that p is countably

subadditive on open sets, let O = UO; and let f be any function in C.(X)

with O <f<1landsupfcO. Thus there are non-negative
functions ¢1, ¢2,..., Pn iN Cc(X) with sup ¢i < O; and

n

> ¢i=1

i=1

onsup f. Thenf=73 ¢if, 0 <¢;i f <1 and
sup (¢i f) < Oi. Thus

f=3 IGiH<Y B0
i=1 i=1

< r O;

™5

’L

Taking the sup over all such f gives
HO<Y RO,
i=1
and p is countably subadditive.

IfO=0;0U0;,withO; " O, =¢and f; € C(X), 0 <fi<1andsup fi
c O;, then the function f=f, + f,hassupfcOand 0<f<1. Thus

I fi+ 1< HO
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Since f; and f, can be chosen arbitrarily, subject to 0 < f; <1 and sup fi
O;, we have

pO1+ nu0O, < n0o,
whence

01+ u0,=pn0
Thus p satisfies the hypothesis of the above proposition so @ extends to a
quasi-regular Borel measure.

We next proceed to show that If = | f du for each feC¢(X). Since f is the
difference of two non-negative functions in C.(X), it is sufficient
to consider f > 0. By linearity we may also take f <1.

Choose a bounded open set O with sup f c O. Set
Ok = {x; n f(x) > k-1}
and O, = O. Then On:; = ¢p and Oy, c Ok.

1 in O
Define dx = <nf(X)—k+1 in Oy -0\
0 in O,
1 n
Then f= —Z ok
N

We also have sup ¢x = O, < O3 and
¢k =1 0on Oys1. Thus
m Oks1 < Ik < n O

for k > 1.
Also
IOk < I dji < 1 O
for k> 1.
Hence
n
—uO1 <> (Igx— o) < TOp + L O
k=1
Consequently

|1 ffdu| < % no

since n is arbitrary,
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If=[fdp.

Thus there is an inner regular Borel measure p which agrees with @ on

the o-bounded Borel sets. Since only the values of u on c-bounded Baire
sets enter into [f du, we have

If = fdu.

The unicity of i and p is obvious.

Unit-11
Normed Linear Spaces

First of all we introduce some sort of distance measuring device to vector
spaces and ultimately introduce limiting notions. In other words, our aim is to
study a class of spaces which are endowed with both a topological and
algebraic structure. This combination of topological and algebraic structures
opens up the possibility of studying linear transformations of one such space
into another. First of all we give some basic concepts and definitions.

Definition 1. A vector space or linear vector space X is an additive Abelian
group (whose elements are called vectors) with the property that any scalar o
and any vector x can be combined by an operation called scalar multiplication
to yield a vector ax in such a way that

(i)  ax+y)=ax+ay
@) (a+B)x = ax + Bx,
(i) (aP)x = a(Bx)

(iv) 1x=x

vV X,y € X and a, B are scalars. The two primary operations in a linear
space—addition and scalar multiplication are called the linear operations. The
zero element of a linear space is usually referred to as the origin.

A linear space is called a real linear space or a complex linear space according
as the scalars are real numbers or complex numbers.
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Definition 2. An isomorphism f between linear spaces (over the same scalar
field) is a bijective linear map that is f is bijective and

f(ox + By) = af(x) + B f(y)

Two linear spaces are called isomorphic (or linearly isomorphic) if and only if
there exists an isomorphism between them.

Definition 3. A semi-norm on a linear space X is a function p : X—R
satisfying

Q) p(X) >0V xeX.
@) p(ox) = o p(x) for all xeX and a.(scalar)

@iii)  p(x +y) < p(x) + p(y) for all x, ye X.

Property (i) is called absolute homogeneity of p and property (ii) is called
subadditivity of p. Thus a semi-norm is non-negative real, subadditive,
absolutely homogeneous function of the linear space e.g. p(x) = |x| is a semi-
norm on the linear space C of complex numbers. Similarly if f : X—>C is a
linear map, then p(x) = |f(x)| is a semi-norm on X.

Thus a semi-normed linear space is an ordered pair (X, p) where p is a semi-
norm on X.

Definition 4. A norm on a linear space X is a function || || : X—R satisfying
Q) |[X]| > 0and |[x|| = 0 if and only if x = 0 for x eX

(i) o]l = fodl- [IxIl

(iii) [yl <[] + iyl

we observe that a semi-norm becomes a norm if it satisfies one additional
condition i.e.

x| =0 iffx =0

Further, |[x|| is called norm of x. The non-negative real number |x|| is
considered as the length of the vector x.

A normed linear space is an ordered pair (X, ||-||) where ||-|| is a norm on X.
Metric on Normed linear Spaces

Definition 5. Let X be an arbitrary set. It is called a metric space if there exists
a function d: X x X—R (called distance or metric function) satisfying
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0) d(x,y) >0
(i) d(x,y)=0ifandonlyifx=y.
(i) d(x,y) = d(y, x)
(iv)  d(x, z) <d(x,y) +d(y, z) [Triangle inequality]
forany x,y, zeX
(X, d) is called a metric space.
Let N be a normed linear space. We introduce a metric in N defined by
d(x, y) = [| x=yll

This metric (distance function) satisfies all axioms of the definition of norm.
Hence a normed linear space N is a metric space with respect to the metric d
defined above. But every metric space need not be a normed linear space since
in every metric space there need not be a vector space structure defined e.g.
the vector space X = 0 with the discrete metric defined by

0 if x=
d(x, y) = nx=y
1 if Xy

is not a normed linear space.

Remark :- In the definition of norm ||x|| = 0 < x = 0 is equivalent to the
condition

X||z0ifx =0

Also the fact that |[x|| > 0 is implied by the second and third condition of norm
0[] = 1|0.1][=0.][1][= 0

and (0[] = [Ix=xI| < [Ix]| + [Ix]| = 2]Ix]|

= 2||x|| >0

= [Ix|| > 0.

Remark :- As in the case of real line, the continuity of a function can be given

in terms of convergence of certain sequence. We can alternatively define
continuity in terms of convergence of sequence in normed linear space also.
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Definition 6. Let (E, ||Jle) and (F, |||lf) be two normed linear spaces
respectively. We say that f is continuous at xocE if given €>0, 36 >0
whenever |[X—Xo||e < &

= |[fE)-Fxo)llF <

Since every normed linear space is a metric space, this definition of
continuity is same in it as the definition of continuity in metric space.

Thus f is continuous at Xo<E iff
whenever Xn—>Xo IN E
f(Xn) —f(Xo) in F.
Remark : In normed linear spaces, convergence is defined as

X = lim X, or Xp—X by |[X,—X||—0 as n—w
n

This convergence in normed linear space is called convergence in norm or
strong convergence.

Definition 7. A sequence <x,> in a normed linear space is a Cauchy sequence
if given >0, there exists a positive integer mg such that

m, N > Mo = |[Xm — Xn|| < €.

Definition 8. A normed linear space N is called complete or Banach space iff
every Cauchy sequence in it is convergent that is if for each Cauchy sequence
<Xp> in N, there exist an element X, in N such that x, — X,. A complete
normed linear space is called a Banach space.

Some properties of Normed Linear Spaces

Theorem 1. Let N be a normed linear space over the scalar field F. Then
Q) The map (o, X)—>ox from FxN—N is continuous

(i) The map (X, y) — x+y from N x N — N is continuous.

(iii) ~ The map x—||x|| from N to R is continuous.

Proof :- To prove (i) we must show that if o, —a and x,—X, then onXp—oxX.
So we assume o, —a and Xp—>X 1.€. Jorn—ot|—0, [[Xn—X||—0.

Then [jotn Xn — aX|| = ||otn(Xn—X) + (otn—ct)X||
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< Jotal [Xn=XI + fotn—ctl- [[Xall—0
and so (i) holds.
To prove (ii) we suppose that X,—X, Ya—Y i.e. |[Xn—X|| =0 and ||y,—Yy||—>0/
Then by triangle inequality
[0 + Yn) =X +Y)II = [I[(X0=X) + (Ya=W)I
< [Xo=XIl + [lyn=yll—>0

and so x, +y, — X +y and hence (ii) holds. Before proving (iii), we establish
the inequality

HIEXI = IV < [ix=yl (%)
We note that in a normed linear space

X[ = {ly + (=)l < lIyll + [Ix=yll
= [IXI[ = IVl < [Ix=yll --(1)
On interchanging the roles of x and y, we find that

Il = Il < Tly=xIl = [Ix=yll (2
From (1) and (2), it follows that

| IXI = IVl T < [x=yl
We now prove (iii). Let x,—X, then from the above inequality,

| Il = Il | < [Ixn=X]| —0
which implies that ||x,|| — |IX|| Thus we have shown that x,—>x = Xl = [IX]I.
Thus the map ||-|| : N—R is continuous. Hence the result.

Remark (1) (i) and (ii) show that scalar multiplication and addition are jointly
continuous where as (iii) shows that norm is a continuous function.

(2) The introduction of a norm in a linear space is called norming

Theorem 2 :- In a normed linear space, every convergent sequence is a
Cauchy sequence.
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Proof : Suppose that the sequence <x,> in a normed linear space N converges
to a point XoecN. To show that it is Cauchy sequence, let €>0 be given. Since
the sequence <x,> converges to X, there exists a positive integer mg such that

n >mo = |[Xn—Xol| <§. Hence for all m, n > mg, we have

€ €
[Pxen=Xall = [Xm =X + Xo =Xal| < [[xm =Xo]l + [xn=Xol| <Z 2 = €.

Thus the convergent sequence <x,> is a Cauchy sequence.
Further Properties of Normed spaces

By definition , a subspace Y of a normed space X is a subspace of X
considered as a vector space , with the norm obtained by restricting the norm
on X to the subset Y. This norm on Y is said to be induced by the norm on X.
If Y is closed in X, then Y is called a closed subspace of X. Thus , a subspace
Y of a Banach X is considered as a normed space. Hence we donot require Y to
be complete.

Theorem 1: A subspace Y of a Banach space X is complete if and only if the
set Y is closed in X.

Proof : The result directly follows from “A subspace M of a complete metric
space X is itself complete if and only if the set M is closed in X.

Definition :- Infinite series can now be defined in a way similar to that in
calculus. In fact, if < xi >is a sequence in a normed space X , we can associate
with < xi > the sequence <S, > of partial sums

Forn=1,2,...... If < S, >is convergent , say S, — Sthatis||S,— S| — 0,

Then the infinite series or briefly the series

is said to converge or to be convergent, S is called the sum of the series and
we write
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If|| x|+ X2+ ........ converges ,then the series (1) is said to be absolutely
convergent. However in a normed space X absolute convergence implies
convergence if and only if X is complete.

The concept of convergence of a series can be used to define a basis as follows

If a normed space x contains a sequence < e, > with the property that for every
X € X, there is a unique sequence of scalars < o, > such that

IX—(ower+........... +onen)|—0 asn —ow (6)

then < e, > is called a Schauder Basis for X. The series

o0
> e e
K=1

which has the sum x is then called the expansion of x with respect to < e, > and
we write

X = Ki:laK ek

Finite Dimensional Normed Spaces and Subspaces

Theorem : Every finite dimensional subspace Y of a normed space X is
complete. In particular , every finite dimensional normed space is complete.

To prove the theorem , we prove a Lemma,

Lemma: Let {X1,X2,.......... , Xn} be a linearly independent set of vectors in a
normed space X (of any dimension). Then there is a number C > 0 such that for
every choice of scalars a1 , oz, ....... , Oln , We have

lota Xg +.ovenenen. +anXn [ =C (o |+....... + o) (C>0) (1)
Proof : Wewrite S=| oy |+]og|+...... +|an|. IfS=0,all o are zero, so

that (1) holds for any C. Let S > 0, then (1) is equivalent to the inequality
which we obtain from (1) by dividing by S and writing 3; = oy/S that is

B X1+ ......... +BnXn]|=C [Zn:lﬂj |=1] 2

Hence it is sufficient to prove the existence of a C > 0 such that (2) holds for
every n-tuple of scalars 1 ,....... , Bn with

Z|Bjl=1.
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Suppose that this is false. Then there exists a sequence <y, > of vectors

Ym = Bl(m) ) G + Bn(m) Xn (Z] ﬂj(m) | _ 1]
=1

such that
|| ym||— 0 as m — o,

Since = | B;™| =1, we have | 3;™| < 1. Hence for each fixed j , the sequence

B™ =B, 3?,......)

is bounded. Consequently , by the Bolzano - Weierstrass theorem , (B:™) has
a convergent subsequence. Let B, denote the limit of that subsequence and let <
y1.m > denote the corresponding subsequence of < yn,, >. By the same argument
, <Y1m > has a subsequence <y, > for which the corresponding subsequence
of scalars ™ converges , let B, denote the limit —continuing in this way , after
n steps we obtain a subsequence

<SYnm > = (Vnd s Yn2 seeeeenenns ) of <ym>

whose terms are of the form

Yom = Zj/j(m) X; [ZU/J_(m) |:1j
: ~

with scalars ;™ satisfying v{™ — B;j as m — oo.

Henceasm — oo,
n
Yom =Y = 218] Xj
=1

where ¥ [B;| = 1 so that not all B can be zero. Since {Xx; ,........ , Xp yis a
linearly independent set , we thus have y = 0. On the other hand , yom — V¥
implies || Yyam || = || Y || by the continuity of the norm. Since || ym || — 0 by
assumption and <y, > is a subsequence of < yn, >, we must have Il Yn.m
|| > 0. Hence |y || =0, so that y = 0. But this contradicts that y = 0 , and the
lemma is proved.

Now we prove the theorem.

Proof of the theorem : We consider an arbitrary Cauchy sequence <ym>inY
and show that it is convergent in Y, the limit will be denoted by y. Let dim Y =
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nand {e1 , e ,...... ,enp any basis for Y. Then each y, has a unique
representation of the form

Since < yp, > is a Cauchy sequence , for every € >0, there is an N such that ||
Ym—VYn || < € when m, r>N. From this and the above Lemma , we have for
some C>0,

r
e>llym=vell = I Y. (o™ -0 g
j=1

\

CY loy™ - 0|
j=1
where m, r > N. Division by C > 0 gives

n
05 - 0?1 < Y loy™ - 0| < % (m,r>N)
j=1

This shows that each of the n sequences

(O(.j(m)) = (ocj(l) : (Xj(z) pereeans ) j=1,2,...,n
is Cauchy in R or C. Hence it converges let o denote the limit. Using these n
limits, o1, a2 ,.... , an , We define

Vy=oyertopert ..ol + oy en
clearly y € Y. Further

n n
Iym=yI=11 > (o™= o) el < > loy™ -yl |l &l
j=1 j=1

On the right ;™ — o. Hence || ym—y || = 0, that is ym — . This shows that
<ym > is convergent in Y. Since <y,> was an arbitrary Cauchy sequence in Y,
This proves that Y is complete.

Remark : From the above theorem and the result “A subspace M of a
complete metric space X is complete if and only if the set M is closed in X,
we get the following :

Theorem : Every finite dimensional subspace Y of a normed space X is closed
in X.

Remark : Infinite dimensional subspaces need not be closed e.g. Let X = C[0,
1] and Y =span{Xxo, X1 ,...... } where x;(t) = ' so that Y is the set of
polynomials. Y is not closed in X.

Quotient Space
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Definition 9. Let M be a subspace of a linear space L and let the coset of an
element x in L be defined by

Xx+M={x+m;meM}

Then the distinct cosets form a partition of L and if addition and scalar
multiplication are defined by

(X +M) + (y+M) = (x+y) +M
and o(X +M) = ax +M

then these cosets constitute a linear space denoted by L/M and called the
quotient space of L with respect to M. The origin in L/M is the coset 0 +M =
M and the negative of

X +M is (-x) +M

Theorem 3. Let M be a closed linear subspace of a normed linear space N. If
the norm of a coset x +M in the quotient space N/M is defined by

| x+M|| = Inf {|[x+m]; m eM} ..()

Then N/M is a normed linear space. Further if N is a Banach space. Then so is
N/M.

Proof :- We first verify that (1) defines a norm in the required sense. It is
obvious that |[x+M|| > 0. since || x+ml|| is a hon-negative real number and every
set of non-negative real numbers is bounded below, it follows that inf {|[x+m||;
meM} is non negative. That is

[X +M|| >0 ¥ x + MeN/M
Also ||x +M|| = 0 < there exists a sequence {my} in M such that ||x +my|| -0
& xisin M
< X + M =M = The zero element of N/M.
Next we have
[(x +M) + (y +M) = [|(x +y) +M]|
= Inf {||x +y +m]||; m eM}
= Inf {||x +y +m +m’||; m and m’e M}

= Inf {JI(x +m) + (y+m’)|| ; m, m’eM}
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< Inf {Jx +m||; m eM} + Inf {|ly +m’|. m’eM}
=[x +M[[ + [ly + M|
| au(x+M) || = Inf {Jlau(x +m) [|; meM}

= Inf {Ja [[x+m]|; meM}

= |of Inf {|[x+m]|; meM}

= lof [Ix+M]|
Finally we assume that N is complete and we show that N/M is also complete.
If we start with a Cauchy sequence in N/M, Then it is sufficient to show that

this sequence has a convergent subsequence. It is clearly possible to find a
subsequence {x,+ M} of the original Cauchy sequence such that

100 +M) — (x +M)| <%

| (x2 +M) — (x5 +M) | <%

and in general

1
[| (%0 +M) = (Xn+2 +M)| <om

we prove that this sequence is convergent in N/M. We begin by choosing any

. . 1
vector y; in X; + M and we select y; in X +M such that ||y1 — ya|| <§ . We next
select a vector y3 in X3 +M such that ||y2—y3||<%. Continuing in this way we

obtain a sequence {yn} in N such that ||y,—Yn+1| <2in. If m<n,then

[IYm =Yl = [IYm=Ym+1) + (Ym+1 = Yme2) ... (Yn-1 = Yn)l

< |IYm = Ymeall + IYme1 — Yme2ll ... 4 |lyn-1 = Yall
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_@m 1
- 1_1 _2m+1
2

So {yn} is a Cauchy sequence in N. Since N is complete, there exists a vector
y in N such that y,—y. Finally

[(xntM) = (y + M)[| = [Ixn—y +M]]
< Inf {|Xn—y+m|; meM}
< |[Xn +m —y|| for all meM

But y, = X, + m, for some m,eM
< |lyn—y|| — 0 since y,—y.
Hence x,+M—y + Me N/M

= N/M is complete.

Definition 10. A series § an, an €X is said to be convergent to xeX, where
n=1

X is a normed linear space if the sequence of partial sums <S,> where

n
Sh = 3 @ converges to x i.e. for every >0, there exists npeN such that
i=1

ISs—X|| < € for n > no. A series ¥ a, is said to be absolutely convergent if
n=1

o)
3 |laq|| is convergent.
n=1

Since every normed linear space is a metric space, hence every convergent
sequence in it is Cauchy but not conversely.

The following theorem gives a nice characterization of a Banach space in terms
of series.

Theorem 4 :- A normed linear space is complete if and only if every
absolutely convergent series in X is convergent.

Proof :- Let X be complete. For each positive integer n, let x, be an element of

) K
Xsuchthat 3 ||Xq|| <oo. Letyk =3 X,. Then

n=1 n=1
k+p k
Yo =Yl = || X X5 =2 X
n=1 n=1
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k+p

2 Xq

n=k+1

k+p
3> |IXn]| = 0 as k—o.
n=k+1

IA

Hence <y, >,_; is a Cauchy sequence in X and since X is complete, there
exists xe X such that

} i k w0
x=limy, =Ilm ¥ x, =3 X,
K—co k—o0on-1 n=1

[ce)
Thus the series ¥ X, converges.
n=1

Conversely suppose every absolutely convergent series in X is convergent. Let

<X,> be a Cauchy sequence in X. For each positive integer k, there is a
positive integer ny such that

1
|IXn —Xml| < oK for all n, m > ny.

Choose ng+1 > k. Lety; = Xy and

Yir1 = Xpp gy — Xy K> 1

= § |lyk|| < co. Therefore there exists ye X such that
k=1
- m -
y=lim Yy, =Ilimx,
m—w k=1 M—>co m

Since <Xp> is cauchy, lim x, is alsoy.
N—c0

Hence the result.

Riesz Lemma :- Let X be a proper closed linear subspace of a normed linear
space X over the field K. Let 0 <o <1, then 3 X, €X such that

[[Xol| = 1 and Inf|Xq—Y]|| = o
yeY

Theorem 5 :- Let X be normed linear space. The closed unit ball

B ={xeX;|x|| <1}
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in X is compact if and only if X is finite dimensional.

Proof :- Let X be finite dimensional. Since B is closed and bounded. It
follows from Heine-Borel theorem that it is compact.

Conversely suppose that B is compact but X is infinite dimensional. Choose
xpeX with ||x4]| = 1. This x; generates a one-dimensional subspace X; of X.
Since every finite dimensional subspace of a normed linear space is closed, it
follows that X; is closed. Now X; is a proper subspace of X and dim X = oo.
By Riesz-Lemma there is an X, X of norm 1 such that

[IX2 —Xq| >

N |-

The set {x1, X2} generates a two dimensional proper closed subspace X, of X.
By Riesz Lemma, there is an X3 of norm 1 such that for all xe X, we have

EE
X|[> =
2

In particular
[Xs—xall = =
and [X3=Xo|| = =

Proceeding by induction, we obtain a sequence <x,> of elements of B such that

1
[m—nl] = 2 (m=n)

i.e. {xn} can not have a convergent subsequence which contradicts the
compactness of B. Hence the result.

Examples of Banach Spaces

The scalar field in each of the following examples will be either R or C
whichever is appropriate.

Example 1: Consider linear spaces R and C of real numbers and complex
numbers respectively. We introduce norm of a number x in R or C by defining
|| x || = | X |. Under this norm, both R and C are Banach spaces.
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Example 2: Consider the linear spaces R" and C" of all n tuples x = (X,
X,.....,xn) Of real and complex numbers. These spaces can be made into
1

n 2
normed linear spaces by introducing the norm defined by || x || = (Z| X; |2j

i=1
We obtain n — dimensional Euclidean and unitary spaces both of which are
complete and hence Banach. It can be easily verified that the norm introduced
satisfies first two properties of norm. To show the validity of triangle
inequality, we need the following two inequalities.

Cauchy’s inequality: Let X = (Xg, Xo,......x5) and y = (Y1, Y2,.....,yn) be two n —
tuples of real or complex numbers. Then

1 1

1%y, |s[_§|xi |2)2 [_§| Y, |2)2
i=1 i=1 =1

Proof: We first remark that if a and b are any two non — negative real numbers,

NI a+b

then a . Infact, on squaring both sides and rearranging, it is

equivalent to 0 < (a — b)* which is obviously true. If x = 0 or y = 0, the
assertion is clear. We therefore assume that x = 0 or y = 0. We define a; and b;

by
2 2
ai = [wj and bi = [M] .
I Iyl

. a+b
Since a¥2. p*? < £ %,

2

iyl _1% P AP+ yi Py I
[RSIRIA 2

Summing these inequalities as i varies from 1 to n, we obtain

n

SIxivil 141
i=1 < _
IxI Ayl 2

and hence

YIxyil<ix Ayl
i=1
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which proves >/, ;| <l Iy Il
i=1

Minkowski’s — inequality : Let X = (X1, Xa,...... xp)andy = (i, Vo,....... ,Yn)
be two n — tuples of real or complex numbers. Then

or Ix+yli<lxli+Iyll

Proof: Using Cauchy’s inequality, we have the following chain of relations.

| Xi + il . | X+ Vil

M:

Ix+ylf=

1]
[N

S i+ vil (%1 + i)

i=1

IN

I Xi +Yil . [Xi|+ Z | Xi + Vil |Yil

i=1

M-

1
-

<l x+yllIx+ix+yl -yl
=lx+ylhdixa+ 1y

If || x +y || =0, the inequality to be proved is trivially true. If || x + y || 2 0, then
dividing the inequality (1) through by || x +y ||, we obtain

Ix+yll<lIxI+yll.
and Minkowski inequality is established.

It follows from Minkowski inequality that triangle inequality in " or C" holds.

Hence R" or C" are normed linear spaces with respect to co-ordinate wise
1

n 2
addition and scalar multiplication and the norm defined by || x || = (Z| X; |2j
i=1
We further claim that R" and C" are complete and hence Banach. We prove the
completeness of R". The proof for C" is similar. Let < f,, > be a Cauchy

sequence in R". If € > 0 is given, then for all sufficiently large m and m’, we

n

have || fm - fov || < €, || fm - fr || < €2 and | (i) - f(i) | < €2 and from
=1
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this we observe that | f(i) - f(i) | < € for each i and all sufficiently large m
and m’. The sequence < f,, > therefore converges pointwise to a limit function f
defined by f(i) = lim f,(i). Since the set {1, 2, ....,n} is finite.

This convergence is uniform. We can thus find a positive integer mg such that |
fm(i) — (i) | <%for all m > mg and every i. Squaring each of these
inequalities and summing as i varies from 1 to n yields

> (i) —f() F< € or || fn—f[ < e forallm=mg.
i=1
This shows that the Cauchy sequence < fn, > converges to the limit f and so R"
is complete.

Example 3: Let p be a real number such that 1 < p < . We denote by I, the
space of all n — tuples x = (Xy, Xa,....., Xp) Of scalars with the norm defined by

Iy = [im |p]‘1’

i=1

Since the norm defined in the last example is obviously the special case of this
norm which corresponds to p = 2, so the real and complex spaces |, are the n —
dimensional Euclidean and unitary spaces R" and C". Let X = (X1,....., Xp) and y
= (Y1, Y2,....., ¥n) @and let o be any scalar. Then I; is a linear spaces with
respect the operations

Since the norm introduced above is non — negative and absolute homogeneous,
so to show that IB is a normed linear space, it is sufficient to prove that

IX+ylp<IIXlp+1ylp-
To show this, we first establish the following inequalities.

Holder’s inequality: Let p and g be real numbers greater than 1, with the

properties that %+% =1 (Such numbers are called conjugate indices). Then

for any complex number

X = (X1, X2, ...., xp) and y = (Y1, Yo,....... , Yn)-
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1 1

% Vi | < @xi |pj" [zwi |q]q
=1 1= i=1

or in our notations

IXiYi | <Xl - 1Y llg

n
i=1

Proof: If x =0 ory =0, the inequality is obvious. So assume that both are non

— zero. Set
w V. q
a=| — and b= —
1 %1l 1Yl
Then using
Up Wi/ a b
a"h’ <—L+= (a,b>0)
P qQ
We have
| X; Vil < i_i_i
IxILllylly P 4
or | X; Vil <:|-|Xi|IO 1ly; |

<— +—
IxUpllylle  PIxIE alylg

Summing these inequalities as i varies from 1 to n, we have

n n n

> Ixivil 12 | [P 12 lyi |?
i=1 < i=1 i=1
Ixlpllylly P lIxIlya [yl

1(||><|Ip)p+3(||yllq)q
P IIxlp a lylg

P q

= > Xyl Xl 11y ll
i=1

We notice that when p = q = 2. Holder’s inequality converts into Cauchy’s
inequality.

Minkowski’s inequality: Let p be a real number such that p > 1. Then for any
complex numbers

X = (X1,....., Xp) @nd y = (Y1, Y2,..-.., ¥n)
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1 1 1
[_zlm " |pj" s(__zlm |pj" + (__zl| Y, |pj"
or X+ y I < 10+ 1Y 1o

Proof: The inequality is trivial when p = 1. So assume p > 1. Using Holder’s
inequality, we obtain

n

Ix+yll, = Z | i +yi |’

i=1

n

=3 it vilxiyi P

i=1

<SS IxilIxi+yiP Y il Ixi+yiPt
i=1

i=1

>

k=2

1
1%, |p) [%| X; +Y; |<p-1>‘*)q
i=1 i=1

(% Yi |pj
1 ip
( 1% |p) (”|xi+yi |p)‘”’
=1 i=1

1 1p

+ (zl Y, |p)" @xi +y, |p)”

_ / /
=Xl X +Y I + 0yl X+ y 5

Tl
Nl

(%ﬁ Xi+Yi |(P-0 j
i

Since (p — 1)g = p, we have

= (%l + 1y llp) - (x +y 115"

If || x +y |, =0, then the result is trivial. If || x + y |, # 0, then dividing
inequality (1), throughout by || X + vy || g’q , We obtain

I+ Y Ix+y 3
ey < (ol ){” ”p,q]

p
p_f
=x+yllp T <lIxlp+1ylh

1
a
=lx+ylly <X+ 1yl
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) 11
= Ix+yll5 <lIxlp+ 1yl since g =1

1 1
= —=1--
p q

Thus [[x+y flp <[[X [l + 'Y [lp-

In view of the Minkowski’s inequality, it follows that |} is a normed linear
space.
Now we prove completeness of Ig .

Let <xm>,_, bea Cauchy sequencein I7.
We write

Let € > 0 be given, since < xp, > is a Cauchy sequence, there exists a +ve
integer mq such that
I,m>mo= [ Xm—Xi|p <€

= [ Xm—x |5 < €P

n
=3 X" -x{? P<el )
i=1

This shows that the sequence < x;" >, is a Cauchy sequence in C or R and

m=1
completeness of R and C implies that each of these sequence converges to a
point say z; in C or R such that

lim
' x™ =7 (i=1,2,....n) @)
m-— oo

we will now show that the Cauchy sequence < X, > converges to the point z =
(21, Z2,...... , zn)€ |7 . To prove this leti — o in (1), they by (2) for m > mo, we

n
Y xM -z P<ef = xm-z|f <P

= Xm—2zlp<e
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Consequently the Cauchy sequence < xn, > converges to z < Ig. Hence Ig is

complete and therefore it is a Banach space.
Example 4: Let p be a real number such that 1 < p < o and |, denote the space

oC

of all sequences X = <Xy, Xa,...... Xityenenens > of scalars s that | Xn P < 0.
n=1

Show that |, is a Banach space under the norm

1
e P
||X ”P = [:E:'Xn|p}
n=1

Solution: [N3]: Since each Z | Xn [P >0 = we have || x |l > 0
n=1

1
and | x [, = 0 e{zwﬂ":o@z % P =0
n=1 n=1
<X P=0 ¥n=1,...,0
S Xp=0 vYn=1,...... ,00

S X =< X1, X2,00000Xn... > =0

NG i X+ vl <Xl + 1y
- ||x+y||p:{z|xn+yn|p (1<p<w)
n=1 a

n=1

1 1
0 }; [ };
<[Sinr] + [Siwr]
| n=1
[Minkowski’s inequality for sequence]

=[x llo + 11y 1l

_ 1
> p
N loxlo=| Sax, ﬂ
=

o |-

- B}
=Y lalIx P
= i

=R

o
|a|[2|xn|*’ =lal Xl
n=1 a

Thus I, is a normed linear space.
To prove that I, is complete.
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Let < x, >, be a Cauchy sequence in I,. Since each x, is itself a sequence of
scalars. We shall denote an element x,, by

Xm = < X, ™ x,M, cxp™ >

o0

Where > | x,™ P < . Since each < x, > is a cauchy sequence in Iy, given
n=1

€ >0, 3 a +ve integer mg such that n, m > m,.
= |[Xn—Xmllp < € 1)

In particular n>my= | Xn— Xy b <e 2

Thus if n > mg, then

[ %a llp = 11 X0 = Xing + Xing llo <110 = Xing [l + 11 Xing llp < € + 11 Xy o

Mo
if €+ X, llp=Asothat A>0,

Then
1

S en
n=1
| Xn |l < A for A > mq. (3)

As in the above examples, from (1), it can be shown that for fixed i, the
sequence < x">_ is a Cauchy sequence in C or R and consequently it must
converge to a number say z;.

Letz=<2z,2p,....... , Zn > We assert that z € |, and the cauchy sequence < x, >
converges to z € |, and we first show that z € |, from (3) we have for n > mq

e
Ixallp <A”= 3 [xVP <A
i=

Hence for any +ve integer L, we have
L

S IxPP<A” (n=mo) 4)

i=1
But fori=1,....., L, we have x" — z; as n — o. Hence letting n — oo in (4),
we obtain

> |ziP<AP(L=1,2,.)

32 |Zi|p£Ap<OO
i=1

L
=1

This proves that z =< z,>_, isin |,.
Finally from (1), forn, m > mq
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[ Xo—Xmllp < €= > Ix{"=—x"P<ef
i=1
Hence for any +ve integer L, we have

L
> IxP - xMP <P (nm=mg)]
i=1
. . lim
Letting m — oo and using x™ =z
m — oo
we obtain
L
> IxP - zif <€ for all n > mg

i=1
Example 5: (The space I,). Let I, denote the linear space of all sequences x = <
X1, Xo,....> of all scalars such that

S Ixa P <0

n=1

& 2
Show that I, is a Banach space under the norm || x || = [Z| X, |2} .

n=1
Solution: This space is called Hilbert coordinate space or sequence space.

This is a particular case of the previous example with p = 2. If the scalars are
real, then |, is known as infinite dimensional Euclidean space and is denoted by
R™ . If the scalars are complex, then I, is called infinite dimensional unitary
space denoted by C”.

Example 5. Let p be a positive real number. A measurable function f defined

on [0, 1] is said to belong to the space LP = L” [0, 1] if Ll|f P <o0.

Thus L* consists precisely of the Lebesgue integrable functions on [0, 1]. Since
|f+gP<2’(fP+]|g),itfollowsthatf+ge Liff g e L". Also of is in
LP, whenever f is and therefore o f + B g L whenever f, g € L". For a

function fin L?, we define
1

IFn=0tl= (1)’

we observe that || f || = 0 < f = 0 almost everywhere. Thus one of the
requirement for a space to be a normed linear space is not satisfied. To
overcome this difficulty, we consider two measurable functions to be
equivalent if they are equal almost every where. If we do not distinguish
between equivalent functions, then LP space shall become a normed linear
space. Thus we should say that the elements of L" are not functions but rather
equivalence classes of functions.
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If o is a constant, then || o f || =] o |. || f||. Thus to show that the linear space L"
is normed linear space, it is sufficient to show that || f+ g || < | f| +| g |- To
show this again we establish two inequalities:

Holder’s Inequality: If p and g are non — negative extended real numbers such

that %Jr% =landiff e LPandg e LY thenfg e L' and

[ 1fgl<iflo- gl

Proof: The case p =1 and q = 1 is straight forward. We assume therefore that 1
< p < and consequently 1 < g < . Let us first suppose that
Ifllb=19]q=1 Using the inequality

o B <ha+ (1-2)B, o and B are non — negative
reals.
Taking a=fO) [, B=lg@® [
A= 1,1-7@1- L = l, we obtain
p pq

1 1
10 9O [< = 1fO P+~ [g@®) [
p q
Now integration yields
1 1
j|fg|s51 |f|p+aj lglf=1 (1)

If || f]|=0o0r]| gl =0, then the inequality to be established is trivial. Let f and

f
g be any elements of L” and LY with || f || = 0. Then T and ” gg” both have
p q

norm 1. Substituting them in (1) gives

Ifl fal
111, 1191l

[Ifgl=]

I 11191l
and hence

[ 1fgl=<lfll. gl

Minkowski’s Inequality: If f and g are in L, then so is f + g and

If+gll<lfllo+1gll

Proof: Since | f+g[P<2° (|f|° +| g |"), therefore f, g L implies f + g L,
the inequality is clear when p = 1, so we assume that p > 1. Let g > 1 such that

% +%:1_Then(p—1)q:p.Also
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[ 1f+gP=] If+gl.If+gf?

=> [ 1f+gP< [ Ifl1f+gP*+ [ [gl.[f+gP? (1)
We note that
JUf+gPT=[ [f+g"P=[ |f+gP<w

sincepg—-q=p
Therefore | f + g [P* € LY Since f, g € LP and we have just shown that | f + g [~

! ¢ LY, Holder’s inequality (proved above) implies that | f|.|f+ g [P*and|g].
f+gP*areinL'and

[ It g P <lflls ICF+gPY Il

[ lallf+gP <l I CIF+gP*) s

But, by definition of norm,

T+ P o= € ] If+g@DTy
={] If+gP¥"

={lf+gll}3"

= {1+ gl
Thus
[ IFL I+ gD <l f o {1 f+g 3" @
[ 1al 1 f+g®V<liglh {lIf+gll 3 (3)

Combining (1), (2) and (3), we have

IE+gllp <CIfllo+1glle) CIf+gll 3™
Dividing throughout by { || f + g ||, }”, we obtain
If+glle<Ifllo+1lgll
which completes the proof of Minkowski’s inequality.

We have proved therefore that LP space is a normed linear space. Now we
prove that it is a complete space. We require some results.
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A series Z f, inanormed linear space is said to be summable to sum S if S is

in the space and the sequence of partial sums of the series converges to S, that
IS,

IS- fill >0

n
i=1

M

AN

In such a case, we write S = fi. The series Z f. is said to be absolutely

i=
summable if > ] <.
n=1

We know that absolute convergence implies convergence in case of series of
real numbers. This is not true in general for series of elements in a normed
linear space. But this implication holds if the space is complete.

Completeness of LP (Riesz — Fisher Theorem): For 1 < p < oo, L” — spaces
are complete.

or
If fy, fo,...... form a Cauchy sequence in L”, that is || fn— f, lb = 0asn, m—
o there isan f € L, such that

|| fn—f|l, —> 0.

Proof: To show that the Cauchy sequence < fn > converges, we construct a
subsequence of this sequence which converges almost every where on X as
follows.

Since < fn > is a Cauchy sequence, then for € = % , Ja +ve integer n; s. that

n, m2n1:>||fn—fm||p<%

2
Similarly for € = (%) , We can choose a +ve integer n; > n; s. thatn, m > n,

1 2
Sl < [Ej

In general having closed ng,...., ng let N1 > ng be s. that

1 k+1
0 fuly < (Ej

for all n, m > ny.; we assert that the subsequence < f, >, convergesa.etoa

limit function, felL,.
From the construction of < f, > itis evident that
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o0 0 1 k ;
S It fulb< 3 (5] =| 2| =1 ®
k=1 k=1 1_i
2
If we define
gk:lfn1|+|fn2_fn1|+ ~~~~~~~ +|fnk+l _fnk|:[fnk]
Fork=1,2,3,...... Then < gx > is an increasing sequence of non — negative

measurable functions s. that
Ngele=Naklly =LILlfo [+, —Fo I+ + fo o [ 3T

k

S [ ” fnl ||P+ Z || anl - fni ”P ]p

i=1

by Minkowski’s inequality.

S [ ” fl"l]_ ||P+ Z || anl_ fni ”p ]p

i=1
<[l o llo+11° by (1)
<o = |l gkl <o
or | gk P du < o
[ 19

Let g = I!im gk- Then by Monotone convergence theorem and the
—>0

above estimate of g} , we have

lim
[ laPdu= " [ lgfldu<e

ie. I [ fo, [+ | f, —f, [Pdu<o Hencege L,
i=1
It follows that
[| fnl |+Z | fnnl_ fnil]p<oo
i=1

a.e and so the series
S fa, 0—To (9]
i=1

converges a. e and consequently the series

00+ Y (Fry (0 fry ()

i=1
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Converges a.e. The k — th partial sum of this series is fny.; (X). and so the
sequence < fni (X) >,

converges to a some non — negative measurable function f(x) for all x € A
where A is measurable and u(A) = 0. Define f(x) = 0 for all x € A. It is easy to
see that f is measurable and complex valued on X.

We will now show that f L. Let € > 0 be given. Choose | so large that
s,;txn = || fi—ffp<e

Then for k > 1 and m > n,, we have
1

”fm_ fnk ”p< €= “fm _fnk |p dUE <e
= I [ — o, Pdu< &P 1)
By Fatou’s Lemma, we have
j |f—fm|pdu:j lim | f, —fn P du<<Pby )
Thus for each m > ny, the function f — fy, is in L, and so f = (f — fy)+fr, is also in
L? and lim || f—fn |, = 0. Thus f € L, is the limit of the sequence < fn >.
N—c0

Hence L, is complete.

Example 6: Consider the linear space of all n — tuples x = (Xu,...... ,Xp) Of
scalars and define the norm by

| X |lo = max {| X1 |, | X2 |,....... , | xn [} [orsup | xi]

This space is denoted by I" .

Show that (I7, || X |l ) is a Banach space. (Also called the space of bounded
sequence)

Solution: We first prove that I” is a normed linear space
[Ni] Sinceeach|x,|>0=]X|[.>0

and [X|le=0 < max {|X1|, | X2 ..., [ Xn [} =0
< |X1|=0,|%X2|=0,.......... ,|Xn|=0
S X =0,......... ,Xn=0
= S , X)) =0 x=0

[N2] Letx=(Xu,...... ,Xp)and y = (Yi,....., ¥n)

Then |[|[X+Yyl|e=max{|Xi+Vyi],|X2+VY2l,...... .| Xn*+ Yo [}
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<max {|Xi|+ |yl X2 |+|Y2lseeeeos [Xn [+ ]Yn]}
<max {|Xy|, [ X2 |yeeeens [ Xn [FEMaxX{|yal, | Y2 leeoens | Y0 [}
= X[l + [['Y [l

[N3] if ais any scalar, then
laX|lo=max{|axXy||otXa]..ce, | 0 Xn [}
=max {[o|[xa][o||Xal,.oos [0t || Xn [}
=|o|max {|xi] | X2],...... , | Xn|
= Lo X e
Hence I is a normed linear space. We now show that it is a complete space.

Let < xm >, be any cauchy sequence in 1" . Since each X, = < X/, X", ...... ,
Xn" > Let € >0 be given, 3 a +ve integer mg s.that I, m > mg

= [ Xm = Xi [l < €

This shows that for fixed i, < x™>Z_is a Cauchy sequence of real (or

complex) numbers. Since € or R is complete, it must converge to some z;
C or R. Thus the Cauchy sequence < xm > converges to z = ( 21, Zo,...., Zn ).

Rest of the proof is simple. Hence | is a Banach space.

Show that I, is a Banach space.

Example 7: Let C(X) denote the linear space of all bounded continuous scalar
valued functions defined on a topological space X. Show that C(X) is a Banach
space under the norm

I£1l= sup {|f(x)] x X}
feC(X)
Solution: Vector addition and scalar multiplication are defined by
(f +9) x =1(x) + 9(x), (o f) x = o f(x)

C(X) is linear space under these operations. We now show that C(X) is a
normed linear space.
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[Ni] Since|f(x)| >0V x € X, we have
I f11=0
and [fll=0=sup{|f(X)|,xe X}=0
< |fX)|=0vxeX
ofx)=0vVxeX
<f=0 (zero function).
[N:] If+gll=sup{|(fF+0)(x)|;x € X}
=sup { | f(x) +g(x) [; x € X}
<sup {|f(x) [+]9(x) |; x € X}

<sup {|f(x) |; x € X}

+sup {|9(x) | x € X}

=l fl+1gll

[Ns] loc il =sup {|(af)(x)xeX}

=sup{|af(x)]|;x e X}

=sup {|a|[f(x) [; x € X}

=|o | sup{|f(X)|; x € X}

=la Il

Hence C(X) is a normed linear space. Finally we prove that C(X) is complete
as a metric space. Let < fn > be any Cauchy sequence in C(X). Then for a
given € >0, 3 a positive integer mg such that

mn>mo=|fn—Tfn|<e
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=Ssup{|(fn-f) X)|;xe X}<e
=sup{|fm(X)-fn(X) |; x e X}< e
= |fn(X)-fX)|<e ¥VxeX

But this is the Cauchy’s condition for uniform convergence of the sequence of
bounded continuous scalar valued functions. Hence the sequence < fn > must
converge to a bounded continuous function on X. It follows that C(X) is
complete and hence it is a Banach space.

Continuous Linear Transformation

Definition: Let N and N’ be linear spaces with the same system of scalars. A
mapping T from L into L’ is called a linear transformation if

T(x+y)=T(x) +T(y)
T(ax) = a T(X)
or equivalently T(cw x + B y) = o T(X) + B T(Y).
Also T(0) = T(0. 0) = 0 and
T(-X) = - T(X)

A linear transformation of one linear space into another is thus a
homomorphism of first space into the second for it is a mapping which
preserves the linear operations.

Definition: Let N and N’ be normed linear spaces with the same scalars and let
T be a linear transformation of N into N’. We say that T is continuous, mean
that it is continuous as a mapping of the metric space N into the metric space
N'. [since every normed space is a metric space d(x, y) = || x —y ||]. But by a
result [ Let X and Y be metric spaces and f : X — Y. Then f is continuous <>
Xn = X = f(Xn) = f(X).]

This implies that X, — X in N = T(x,) — T(x) in N’

In the next theorem, we convert the requirement of continuity into several more
useful equivalent forms and show that the set of all continuous linear
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transformations of N into N’ can itself be made into a normed linear space in a
natural way.

Theorem: Let N and N’ be normed linear spaces and T a linear transformation
of N into N’. Then the following conditions on T are equivalent to one another.

(1) T is continuous

(2) T is continuous at the origin, in the sense that x, — 0 = T(x,) — 0.

(3) 3 a real number K > 0 with the property that | T(x) || < K || x || for every

X € N.

@) IFS={x:| x| <1} isthe closed unit sphere in N, then the image T(S) is a

bounded set in N'.

Proof: (i) = (ii) If T is continuous, then by the property of linear
transformation we have T(0) = 0 and it is certainly continuous at the origin. For
if T is cont and {x,} is a sequence of points in N such that x, — 0, then by the
continuity of T, we have

Xn—> 0= T(Xn) > T(0)

= T(Xn) > 0 since T(0) =0.

Conversely if T is continuous at the origin and {X,} is a sequence such that

Xn—> X, then

Xn >X=>X—X—=>0

=TX,—X) > T(0)=0 [since T is continuous at the origin]

= T(X)-T(X) —>0

Hence T is continuous

(2) = (3) Suppose that T is continuous at the origin. We shall show that 3 a
real number K > 0 such that || T(x) || < K || x || for every x € N.
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We shall prove this result by contradiction. So suppose 3 no such K. Therefore
for each +ve integer n, we can find a vector x, s. that

I TC) 1> 1l x|

Which is equivalent to

ITOD Sy o [ )”>1 o
niix, |l niix, i
we put Yn = X,
= n
nix, |
Ix. 0 _ 1
Then [ynl]= —"~==—>0as n— .
niix, I n

If follows from it that y, — 0. But from (1) T(y,)~> 0. So T is not continuous
at the origin which is contradiction to our assumption.

Conversely, suppose that 3 a real number K > 0 with the property that || T(x) ||
< K| x || for every x € N. if {x,} is a sequence converging to zero, then

Xn—=>0=[[Xa | >]I0]|=0

Therefore | Txn) | <K [ Xn ]| —0

And hence T(x,) — 0 which proves that T is continuous at the origin.

(3) = (4) Suppose first that 3 a real no K > 0 with the property that || T(x) || <
K| x| forevery x e N.IfS={x:]| x| <1} is the closed unit sphere in N,
then for all x, we have

I TO) I < K x|l

=>||TX) <KV XxeS.

Hence T(S) is a bounded set in N'.
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Conversely suppose that S = {x : || x || < 1} is the closed unit sphere in N and
T(S) is bounded in N’. Then
[TX)|I<K ¥xeS

If x =0, then T(x) = T(0) = 0 and therefore in this case we have clearly || T(x) ||
X X X
<K|x]|. Ifx=0,then — < S (*||—]| = 1) and therefore || T(—j I
x| Il [l
<K
e [ TO) [ <K xl

Space of Bounded Linear Transformation

Definition: A linear transformation T is said to be bounded if 3 a non —
negative real number K such that

TG 1<KV x

K is called bound for T.

Remark: Thus according to the above theorem T is continuous iff it is
bounded.

From condition (4) of our theorem, we can define the norm of a continuous
linear transformation as follows:

Definition: Let T be a continuous linear transformation, then
I T=sup LI TG [ x]<1}
is called the norm of T.
Obviously norm of T is the smallest M for which || T(x) || < M || x || holds for
every
e [Tl=Inf{M;[|TX)I<M| x|}

Theorem: Let N and N’ be normed linear spaces and let T be a linear
transformation of N into N’. Then the inverse T exists and is continuous on its
domain of definition iff 3 exists a constant m > 0 s. that
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M x| <[[TX) |V x e N. 1)

Proof: Let (1) hold. To show that T™ exists and is continuous Now T exists
iff T isone —one. Let X4, Xo € N. Then

T(X1) = T(X2) = T(X1) = T(x2) =0 m || X1 — Xz
<[ T(X1—%2)[|=0

:>T(X1—X2):O
:>||X1—X2 ||:0

=>X1—-X%X=0 by(1)
=>X1=X2

Hence T is one one and so T~ exists. Therefore to each y in the domain of T,

JaxinNs. that
TX) =y =>x=T(y) )
Hence (1) is equivalent to
1 1 1
miTyl<liyli=1T"Ml< iyl

— T is bounded
— T is continuous (by the above theorem)

conversely let T exists and be continuous on its domain T[N]. Let x € N.
Since T exists, there isan y € T[N] s. That

TH(Y) =x=TKX) =y @)
Again since T is continuous, it is bounded so that 3 a +ve constant K s. That
[Tyl <Ky =[x <K TE) [ by (3)

:>m||x||s||T(x)||Wherem:%>0
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Theorem : Let N and N’ be normed linear spaces and let T be a bounded linear
transformation of N into N’ : Put

a=sup{[ITC) [;x €N, [[ x| =1}
b=sup { TOI/1Ix[l; x € N; x =0}

c=Inf{K;K=>0,||TX) | <K || x|V x e N}

Then
|T|=a=b=c

and
ITEON<NTINxI ¥x eN.

Proof: By definition of norm
ITH=sup{NTGY;xeN, [Ix[[<1}
By definition of ¢, || T(X) || <c || x| VX € N
andif || x| <1, then|| T(X)||[<c¥VxeN
andsosup {|| T(X)|;x € N, || x||<1}<c
i.e. ITl<c.

Also by definition of b and ¢, itisclearthatc <b [ || T || < ¢ < b]. Again if

X =0,

Then ITOA /Il = 11T (lel
11|

and ||_§|| has norm 1. Hence we conclude from the definitions of b and a that b

< a. But it is evident that
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a=sup {II TO) I x e N[ x[[=1}<sup{IT()[; x e N;[Ix[[<1}
=a<|T|.
Thus we have shown that
[Tll<c<b<a<|T]
=|T|l=a=b=c.
Finally definition of b shows that

Tl T
W Ssup{w,x e N,X?’—'O}

=b=|T]|

=TI < T

Remark : Now we shall denote the set of all continuous (or bounded) linear
transformation of N into N’ by B(N, N’) [ where letter B stands for bounded ].

Theorem : If N and N are normed linear spaces, then the set B(N, N’) of all

continuous linear transformation of N into N’ is itself a normed linear space

with respect to the pointwise linear operations and the norm defined by
ITH=sup LTI IIx N <1}

Further if N’ is a Banach space, then B(N, N’) is also a Banach space.

Proof: Let B(N, N’) be the set of bounded linear transformation on N into N'.
Let Ty, T2 € B(N, N). Define T, + T, by

(T1+T2) (X) = Ta(X) + Ta(x)
and oT by
(T X)=aT(xX) V¥xeN.

It can seen that under these operations of addition and scalar multiplication,
B(N, N’) is a vector space since we know that the set S of all linear
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transformation from a linear space into another linear space is itself a linear
space w.r.t. to the pointwise linear operations. Therefore in order to prove that
B(N, N’) is a linear space, it is sufficient to show that B(N, N’) is a subspace of
S. Let Ty, T, € B(N, N'). Then T, and T, are bounded, so 3 real
numbers K; > 0 and K; > 0 s. that

[ T200) | < Ky || x [land [| To(x) [| < Kz [ x|

for all x eN.
If o, B are any two scalars, then

[l (o0 Ta+ B T2) () | =] (aTa) () + (BT2) (x) ||
=llae Ta(x) + B To(X) |
<l Ta®) I+ 1B IT2(x) |l
<lo | Ke[[x [+ 1B Kz [l x|l
=[lalKe+[BIK2 ]I x|

Thus o T; + 3 T, is bounded and so
aT1+B T, e B(N,N)

This proves that B(N, N') is a linear subspace of S.
Now we prove that B(N, N’) is a normed linear space with respect to the norm

defined by
ITH=sup LTI NIxN<1]

which is clearly non — negative. We have
(i) [TI=0=sup LT I: lIxlI<1}=0

@SUD{M,X;tO}:O
I

@%:OVXEN,X::O

< [T [[=0
©TX)=0=T=0

(i) foaTl=sup{ll(aT) ) lIxl<1}
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=sup{llo. TCY I I x <1}
=sup{ o[ I T) I [Ix[[<1}
=lof.sup LT[ lIx NI <1}
(iii) [ To+Toll=sup{Il (To+T2) X) II; I x[[<1}
=sup { || Ta(x) + T2(x) B [ x <1}
<sup{ T [ lIx NI <1}
tsup {[[ T2 [l I x NI <1}
= To [+ T2l
Hence B(N, N’) is normed linear space. It remains to prove that if N’ is a
Banach space, then B(N, N’) is also a Banach space. For if; suppose N’ is a
Banach space. Then N’ is complete. It sufficies to show that B(N, N’) is
complete. Let {T,} be an arbitrary cauchy sequence in B(N, N’), then for any x
" 1 7m0~ o) 1= 1l (T~ To) 9|
< T =Ta Il 1)
L ITO N <IT NI

This shows that {Tn(x)} is a cauchy sequence in N’. Since N’ is complete, 3
T(x) in N’ such that T,(X) > T(X) VX € N i.e.
T(x) = lim T,(x). Now T defines a mapping T from N to N'.

N—c0

It is obvious that T is linear. For
T(x+y) = lim T,(X +y)
N—wo
= lim Ty(x) + lim T,(y)
N—cwo N—co
=T(x) + T(y)

and T(ow. X) = lim Ty(a X)
N—w
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= lim {o. Ta(X) }
Nn—w
=a. lim{Ty(X) } =a.T(X)
n—cwo
Now {T,} being a cauchy sequence, lim {| T,—Tn]| } =0 and since
m,n—co

[CHETall=I T D) T< 1/ Ta =T

it follows that
lim [ (I Tall-1I Tmll)[=0
m,n—co

Therefore [ || Tn || ] is convergent and hence bounded i.e. 3 a real no K s. That

IToll<K, n=12,......
and therefore [TaC) < Tall X I < KXl vn
Thus [TCY = lim | Ta() | <K x|
m,n—co

= T is bounded

Hence T € B(N, N’). If we prove that T, — T. Then we have that B(N, N’) is
complete. For let € >0, choose ng so that

| Tm—Tall < g if m, n>no. Then

| Tm(X) = Ta(X) || < % x| form,n>ng xeN.
Letting n — oo, we get

||Tm(x)—T(x)||<§||x|| form>no, x € N

since T(X) = fim Tn(X).
n— o

This implies that for m > ng and || X || < 1, we have
I TO) = Ta(x) | =1l T(X) = Tin(X) + Trn(x ) = Ta(X) ||

T =Tl ||+ [ TmnlX) = TalX) ||
T =T 1+ 11 T =T L X ]

<ITC) =Tl N+ I T =Tall - [ [Ix (< 1]

N | M
N | M
I
M
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This shows that
IT-Tal[=sup{II TX)-TaX) [l [ X[|<1}<e

Hence T, > T.
Thus we have proved that B(N, N’) is a complete normed linear space.

Note: By the definition of bounded linear transformation, it is clear that a
continuous linear transformation is bounded linear transformation and
conversely.

Also if N and N’ are normed linear spaces, the space L(N, N’) or B(N, N’) is
also called space of all continuous linear transformation. In notation if N = N’,
the space is also denoted as B(N).

Definition: A continuous linear transformation of a normed linear space into
itself is called operator on N. The normed linear space consisting of all linear
operators on N is denoted by B(N) instead of B(N, N’). The above theorem
asserts that if N is a Banach space. B(N) is also a Banach Space.

Definition: An algebra is a linear space whose vectors can be multiplied in
such a way that

Hx(yz)=(xy)z

(i) x(y+z)=xy+yzand(x+y)z=xz +yz

(i) axy) =(ax) y=x (o y) for all scalars a.
Thus an algebra is a linear space that is also a ring in which (iii) holds.
If the linear operators T1 and T, are multiplied in accordance with the formula

(T1 T2) (X) = T1(T2(X)) VxeN
Then 8 (N) is a algebra in which multiplication is related to the norm by
ITTN<ITIT
This relation is proved by the following computation
ITT N =sup {II(TTHIC) [ Ix[[<1}
=sup [ TCTO) I I x <1}
<sup {LITINT G I NI x <1}

=ITHLsup I TO) I I x <13}

=TT @)



92

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS

Since we know that addition and scalar multiplication are joining continuous in
normed linear space, they are also jointly continuous in B (N). Also
multiplication is continuous, since

If T, > TinB(N)and T,/ — T"in B(N)

Then Th T >TT
Since
[ TaTa -TT = Ta(Ta -T)+(Th =T) T ||
<ITalllITe" =T I+ Ta=TI T

But (T,) being convergent sequence in 3 (N), it must be bounded so 3 M such
that
[TaTa -TT <M T -T" | +[| T"[. [ Ta=T[ —>0asn—

0,

We also remark that when N = { 0 } then the identity transformation 1 is an
identity for the algebra B(N). In this case we clearly have

=1
for T =sup LGOI [ xNI=1}
=sup{lIx[;Ix)I=1}
=1
Definition: Let N and N’ be normed linear spaces. A one to one linear
transformation T of N into N’ such that || T(x) || = || x || for every x in N is

called isometric isomorphism. N is said to be isometrically isomorphic to N’ if
3 an isometric isomorphism of N onto N'.

Theorem: If M is a closed linear subspace of a normed linear space N and if T
: N — N/M defined by T(x) = x + M. Show that T is continuous linear
transformation for which | T || < 1.

Proof: Since M is closed, N/M is a normed linear space [since every closed
subspace of normed space is normed] with the norm of a coset x + M in N/M
defined by
[x+M|=Inf{||x+m|;meM}
T(X1+X2):X1+X2+M
=X +M+x,+ M [definition of N/M]
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= T(x2) + T(X2)
TAX)=AX+M=AX+M)=AT.

= T is linear.
[Tx[[=Ix+M][=Inf{|[x+m|;meM}

<Inf{{I x| +]m|;me M}

<Inf||x||+Inflm]:meM

=[x +0.

[since M is subspace of N, 0 is the element of M which has smallest norm
namely zero]

Then
[Tx|I<|Ix]|| ¥neN
= T is bounded
Since
sup || Tx || sup
— <1=||Tx|Ig]|x||£1l=> T I x| <1
e xS ITX=IxI== 7 LTI lx) <1}
<|Ix|<1
=|T|I<L

Theorem: Let E and F be two normed linear spaces. Then they are
topologically isomorphic iff 3 m, M and a linear mapping T : E — F which is
one-one and onto such that

mlx||<||Tx|[|[<M] x| VxeE

Proof: Let E and F be top. isomorphic, then by definition 3 linear mapping T :

E — F such that T is cont, bijective and T™ exists and is also continuous. Then

by using theorem on continuous of linear transformation 3 M such that
[Tx|<M| x| VxekE

Also by the last result, 3 m > 0 such that
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mx[|<[[Tx|<M]x]]

Since T exists and is continuous Then we have linear one — one onto mapping
such that 3 m >0, M > 0 such that

m|x||<|ITx||I<M|x||VxeE
conversely if 3T : E — Fsuch that T is one —one onto and 3 m, M s. That

mIx[[<[|TX)[[<M] x| VXxeE.
Since TX) <M x|
Hence T is bounded

By the theorem on continuity (or bounded) = T is continuous.

Now From ml| x| <|| TX) ||
Tis1-1and onto = T exists.

— T is continuous. Hence T is bijective, cont and T exists and is
continuous or [ T is open]

= E and F are topologically isomorphic.

Remark: On a finite dimensional space R" or C", all the norms are equivalent
in the sense that they define same topology up to top. isomorphism.

Definition: Let E and F be normed linear spaces. Then E and F are said to be
equivalent as normed spaces iff 3 m >0, M > 0 such that

m|x||<||Tx||[sM]| x| VxeE.

Conjugate of an Operator

Let N be a normed linear space and T a continuous linear operator on N. Then
for any functional f € N*, the composite mapping (foT) is a continuous linear
functional since

(foT) (ax+BY) =f(T(ax+PyYy);X,ye N
=f(o. T(X) + B (T(Y))
=a f(T(x)) + B f(T(y))

=a (foT) (x) + B (foT) (y)

Moreover since f and T both are continuous, foT is also continuous Hence
foT € N*.
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Define a mapping
T*:N* —> N*

by
T*(f) =foT VfeN*

This mapping is called the conjugate of the operator T.
Also we note that

(T*(F) (x) =f(T(x)) V¥ x e N.
we assert that T* is linear, for
(T f+Bg) (x)=(af+Bg)(T(X)

=af(T(x)) + B . 9(T(x))
=a(fT)()+B(@@T) (X
= o(T*(f)) () + B (T*(9)) (%)
= (o (T*(F) + B (T*(9)) ()
T* is also bounded (continuous) and hence
[Tl =sup {UHT=FI NI fll<213

=sup {|T*(M) ) [ [Ifll<land|Ix[I<1}

=sup {FTOD [ IFII<L Ix[I<1}

<sup {IFIIT IR IFl<2 ix <1}

<[ Tl

Since N is a normed linear space, for a non — zero vector x in N, there exists a

functional f on N such that
| £1l=21and f(T(X)) = T() | [Nl fll=2and f(x) = || x |

Therefore
IT=sup{lITxI;lIx|I<1}

=sup { f(T(x)) ; [[x[[<land | fl[<1}

1)
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<sup {f(T(x)) ; I x[|<land || fll<1}

=sup{|T*(OC) 5[ fll<land[|x[[<1}

=sup LI T*FlllIxI;Ifll<land[[x|I<1}

ssup{|T*Fll;Ifll<1}

=T )
From (1) and (2), it follows that

ITH=1T @)

consider the mapping

¢ : B(N) — B(N*)
defined by

o) =T* vV T e B(N)
Let T4, T, € B(N). Then

o Te+ B To) = (o To + B To)*
But for all f € N* and x € N, we have

[ Te+B T2)* (O] () =f[(a TL+ B T2) (X)]
=flaTax) + B Tax) ]
= o f(T(x)) + B £ (T2(X))
= o (fTy) )+ B (FT2) (%)
= aTr*()) (%) + B (T2*(H)(X)
= (o [Te*(] + B [T2*(H]) (%)
={laT* + B T2T (O} (X)

Therefore, we have
G(aTi+BT)=(aTyL+BT)*

=a T*+ B To*
= o §(T1) + B ¢(T2)

which shows that ¢ in linear.
Also ¢ is one to one, since
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0(T2) = ¢(T2) = To* = To*
ST =T*) Ve N*
= [T*()] (x) = [T2*()] (x)
= f(T1(x)) = f(T2(x))
= (T-T)®)=0 ¥xeN
—>T-T=0 =>Ti=T,

Moreover
oM =1T[=1TI

Hence ¢ is an isometric isomorphism and it preserves norm also.
If f € N*and x € N, then

[(T2 T2)* (O] () = (T2 T2) (x)
= (T2 (T2(x))
= (fT) (T2(x))
= (T2*(6) (T2(x))
= T2* (Tr*()) (%)

= [(T2* Tr*) (] (%)

(Te T)* =Ty* T1*

and if I is an identity operator, then

[ (] () =f[I(x) ] = f(x)
= (1() )
=>I1*=1

Thus we have proved the following:
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Theorem: If T is an operator on a normed linear space N, Then its conjugate
T* is defined by equation
[T*(O)] (x) = fIT(x)]

is an operator on N* and the mapping T — T* is an isometric isomorphism of
B(N) into B(N*) which reverses the product and preserves the identity
transformation.

Theorem: A non empty subset X of a normed linear space N is bounded <
f(X) is a bounded set of numbers for each f in N*.

Proof: Since | f(x) | < || f || || X ||, it follows that if X is bounded, then f(X) is
also bounded for f.

To prove the converse, we write X = { x; }. We now use natural imbedding [x
— Fn] to map X to the subset { F, } of N**. The assumption that f(X) = {

f(xi)} is bounded for each f implies that { F 4 (N} is bounded for

each f. Moreover since N* is complete. The uniform boundedness theorem
shows that{F, } is a bounded subset of N**.

Since natural imbedding preserves norms, therefore X is evidently a bounded
subset of N.

Conjugate Spaces

We know that the spaces R and C are real and complex complete normed linear
spaces. If N is an arbitrary normed linear space, then the set B(N, R) or B(N,
C) of all continuous linear transformations of N in R or C is a normed linear
space. This space is called the conjugate space of N and is denoted by N*.
The elements of N* are called continuous linear functionals or simply
functionals. The norm of a function feN* is defined as

IIfll = sup {IfFCAI 5 lIxI < 1}

Since R and C are Banach spaces, it follows that B(N, R) and B(N, C) are also
Banach spaces. Thus N* is also a Banach space.

Hahn-Banach Theorem and its applications

Hahn-Banach Theorem is a strong tool for functional analysis. In fact the
theory of conjugate spaces rest on the Hahn-Banach Theorem which asserts
that any linear functional on a linear subspace of a normed linear space can be
extended linearly and continuously to the whole space without increasing its
norm.

Statement of Hahn Banach Theorem : Let M be a linear subspace of a
normed linear space N and let f be a functional defined on M. Then f can be
extended to a functional f, defined on the whole space N such that
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fo(x) = f(X) ¥V x M and ||fo| = |[f]]

Proof :- Let f be a functional defined on a subspace M of a real normed linear
space N and let Xo be any vector of N which is not in M. Consider the set {M +
txo} of elements x + txo where xeM and t is an arbitrary real number. Then
{M + txo} is obviously a linear manifold of N. Every element of {M + tx¢} is
uniquely representable in the form x + txo, for if O there exists two
representations y; = X; + t1Xo and y, = X, + t, Xo, We can suppose that t; = t, for
0 otherwise X1+ t; Xo = X2 + t2 Xo would imply X; = X, and the representation
will be unique. Then

X1 — X2 = (t2 — t1) Xo

X1 =X,

= Xo =
’ tZ_tﬁl.

But this is impossible since xo¢ M and X1, X, €M. Hence t; =t and Thus x; =
X2 which proves the uniqueness.
For any two elements, X1, X €M, we have
f(x1) — f(x2) = (X1 —X2)
< [f(x2 - x2)|
< |If]]. 2=l
= Ifll. {11 + Xo =(X2 + Xo)[}
< JIf{] 1% + Xol| + [Ix2 + Xoll}
so that
f(xa) = Ifll- lIxa + Xoll < f(x2) + [Ifl]. X2 + Xoll
Since x; and x; are arbitrary in M,

We have

SUp{f(x) — [Ifl-fx+xol(} <INt {F0<) + [Ifl. lIx+xoll}

eM
Thus there exists a real no o which satisfies the inequality

SUp{T(x) — [Ifll [x+xol(} < o < Inf {f(x) + [if.[Ix+xoll} 1)

XxeM
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Now let y be an arbitrary element of {M + t Xo}. Then y is uniquely
expressible in the form y = x + txo. We define a function ¢ on {M + tx¢} by

d(y) =f(X) — toe V ye{M + txo}

where a is a fixed real number satisfying (1). Obviously ¢ coincides with f in
M and the linearity of f implies that ¢ is linear. We shall show that ¢ in
bounded and has the same norm as f(x). We distinguish two cases :

(i)  t>0.Since % €M, the relation (1) yields

o(y) = f(x)-ta
=t {f (i — (x}
t

X
<t {||f||. TJFXO

= Il IIx + ol

= i1l iyl (2
(ii) t < 0, In this case (i) yields

X X
fl 2 o> F) |2 x
R LI e

1
=——Ifl.lyl
| ]

1
== |Ifll -
o I T

and therefore d(y) =f(x) —to
(i)}
t

1
<t v

=1Ifl- vl ..3)
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Thus from (2) and (3), it follows that
oY) < [Ifll . IVl v ye{M + txo}
Replacing y by —y in (2), we have
=o(y) <Ifll - lIivll ¥ ye{M + txo}
Therefore  [o(Y)| <|[fll . lIyll ¥'y € {M + txo}
and therefore ||| < |Ifl| ...(4)
But ¢ being an extension of f from M to {M + tx,}
we have 1ol > Il ..(5)

Hence from (4) and (5)

llpll = Il

Now if the elements of the set N — M are arranged in transfinite sequence Xo,
X1, X2,..., Xk...., we extend the functional successively to the spaces

{M + tXo} = Mo, {Mp + tx;} = M; and so on since the norm
remains the same at each step, continuing the above process, we arrive at a
functional fo which satisfies both the conditions, namely

fo(x) = f(x) ¥ xeM and |[fo|| = |[f]|
This completes the proof of the theorem.

Complex Form of Hahn Banach Theorem

When N is complex and f is a complex valued function defined on M, let f; and
f, be the real and imaginary parts of f. Thus for each xeM, we have

f(x) = f1(X) + i f(X)
and
[FLOA, [F2001 < [FOL < [Ifl]. Il

we claim that f; and f, are real valued linear functionals. Let ooeR and
consider

o F(x) = atfi(x) + it Fa(X) (1)

Since f is a linear functional, (1) must equal
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f1(ax) = afi(x) and fo(ax) = afa(X)
In a similar fashion, we can show that sums are also preserved.
Now consider

i(fi(x) + ifa(x)) = if(x) = f(ix) = f; (ix) + ifo(ix)
Equating real and imaginary parts, we have

fa(ix) = —f2(x)
and fo(ix) = f1(X)

Thus f(x) = f1(X) — if1(ix)
(2)

Now by the above proved theorem, there exists a function F; defined on the
whole space extending f; such that

|IF1]| = |If1]] and F1(x) = f1(X) V xeM
we now define
F(X) = F1(x) — iF4(ix) ..(3)

We now assert that F extends f. To prove this let xeM and consider (3). Since
F1 extends f1, so

F1(x) = f1(x) and F1(ix) = f1(ix) = —f2(x)
Thus
F(x) = f1(X) + if(X) = f(x)
and hence F extends f.
Moreover by (3)
F(ix) = Fu(ix) — iF1 (i°%)
= Fy(ix) — iF1(—x)
= Fy(ix) + i F1(X)
IF(X) = i[F1(x) — 1F1(ix)]

= iF1(x) + Fy(ix)
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we see that F(ix) = iF(x)
and therefore is a complex linear functional.
Put F(x) = re', then

IFOOI=Ir €| = r "]

=r=¢" F(x)

Thus Fe™x) is a purely real quantity which implies that imaginary part of
Fex) i.e.

—F1(i e x) must be zero.
Thus F(e%) = F1(e7 x)
and we have

IFO| = [Faex)] < [IF4ll. [Ix]]. |67
= [[fa]l- I
= [If]] . ||

which gives ||F|| < ||f||

Moreover F being an extension of f, we have
[IFI = (Il

Hence ||F|| = ||f|| and the proof is complete.

Applications of Hahn-Banach Theorem

Theorem 1:- In N is a normed linear space and X, is a non-zero vector in N,
then there exists a functional fo in N* such that fo(Xo) = ||Xo|| and

[foll = 1. In particular if x =y (X, yeN), there exists a vector
f eN* such that f(x) = f(y).

Proof :- Consider the subspace

M= {OL Xo}
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consisting of all scalar multiplies of X, and consider the functional f defined on
M as follows :

f: M —F, f(axo) = a. [[Xol|
clearly, fis a linear functional with the property
f(Xo) = [Xoll
[f(axo) = fat]. [[Xoll
= [joXoll (1)

[Ifll = sup {If(cxo)| ; [lexol| < 1}

= sup {Jloxol| ; flox]| < 1}

<1

But if there were a real constant k such that k < 1 and [f(aXo)| < K ||oXo|| V' oXo
M. This will contradict the equality defined by (1). Thus ||f|| = 1. We have
thus established that f is a bounded linear functional defined on the subspace M
with norm 1. Now by Hahn-Banach Theorem, the functional f can extended to
a functional f, in N* such that

fo(Xo) = f(Xo) = [|Xol| and |[fol = [Ifl| = 1
This completes the proof.

In the particular case since x =y, X — y # 0 and so by the above, there exists an
feN* such that

f(x-y) =[xyl =0
= f(x) —f(y) =0
= f(x) = f(y).
Remark : (1) This result shows that N* separates the vectors of N.

(2) This result also shows that Hahn-Banach Theorem guarantee that any
normed linear space has rich supply of functionals.

Theorem 2 :- Let M be a closed linear subspace of a normed linear space N
and let ¢ be the natural mapping (homomorphism) of N onto N/M defined by
$d(x) = x + M. Show that ¢ is a continuous (or bounded) linear transformation
for which
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loll<1.

Proof :- Since M is closed and N/M is a normed linear space with the norm of
a coset X + M in N/M defined by

| x + M| = Inf{|[x + m||; m € M}
¢ is linear :- Let x, y be any two elements of N and «, 3 be any scalars. Then
d(ax + By) = (ox + By) + M = (ox + M) + (By + M)
=a(x+M)+p(y+M)
= o §(x) + Po(y)
= ¢ is linear.
¢ is continuous :- [|p(X)|| = |[x + M|
= Inf {||x +m||; m M}
<IX+mj] VmeM
In particular for m = 0, we have
OO < [Ix[| = 1. Ix]| ¥ xeN

It follows that ¢ is bounded by the bound 1 and consequently ¢ is continuous.

Further
lloll = sup {lIHOI 5 xeN; [Ix|| < 1}
<sup {|Ix|l ; xeN; [Ix]| < 1}
<1
Thus ||¢]| < 1.

Theorem 3:- Let M be a closed linear subspace a normed linear space N and
let xg be a vector not in M, then there exists a functional F in N* such that

F(M) = {0} and F(xp) # 0

Proof :- Consider the natural map ¢ : N— N/M defined by ¢(x) = x + M. As
shown in the last theorem ¢ is a continuous linear transformation and if m M,
then ¢(m) = m + M = 0, where 0 denotes the zero vector M in N/M.
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In other words, (M) = {0}

Also since xo ¢ M, we have
d(Xo) = X0+ M =0.

Hence by theorem 1, there exists a functional fe (N/M)* such that
f(Xo + M) = ||xo + M|| = 0

We now define F by F(x) = f (¢(x)).

Then F is a linear functional on N. With the desired properties as shown below

F is linear :-
F(ox + By) = f(p(ox + By)) = f(ax + By + M)
= fla(x +M) + By + M))
= af(x + M) + B f(y + M)
=a f(¢ (x)) + B f(4(y))
= a. F(X) + B. F(y)
F is bounded :-
IFOOI = [f(o(X)]
<l lloGIl
<|Ifll - lloll - i
<[l {1l
since loll<1

Since f is bounded (being a functional). It follows from the above inequality
that F is bounded. Thus F is a functional on N i.e. FeN*. Further if meM,
then

F(m) = f(¢(m)) = £(0) =0
Thus FIM)=0V meM

and F(X0) = f(9(X0)) = f(xo + M) # 0
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Theorem 4 :- Let M be a closed linear subspace of a normed linear space N
and let xo be a vector not in M. If d is the distance from Xy to M, show that
there exists a functional fo N* such that

fo(M) = {0}, fo(xo) = d and [[fo]| =
Proof :- Since by definition
= Inf{||Ixo + m|| ; m eM}
Since M isclosedand xo ¢ M = d >0.
Now consider the subspace
Mo ={X + aXo ; X €M and o real}

Spanned by M and Xxo. Since Xo ¢ M, the representation of each vector y in Mg
in the form y = X + o Xp is unique. For if there exists two scalars o; and o, and
vectors X; and Xz in M such that

Y=o Xo+ Xz and y = o Xo + X2

= (o1 — o) Xo = X2 — X1
_ X=X
= Xo =
O —0ap
= Xo €M which is a contradiction, since Xo ¢ M by our
assumption. So each y in Mg is unique. Define the map f: My — R by
f(y) = ad

where y = X + aXp and d as in hypothesis. Because of the uniqueness of y, the
mapping f is well defined. Also f is linear on My, and

f(xo) =f(0 + 1. xg) = 1. d =d and if meM,
then f(m) =f(m + 0. x0) =0.d=0
so that f(M) = {0}.
We now prove that ||f|| =

Since

e sup{' W, Moy;eO}
= Y
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s {'f(“axo)'x MaeR}
|| X+ X ||
{ |ad] XEM;OLER,O(?&O}
| X +ax, ||

=sup s ——;XeM,aecR,a=0
x0+

=dsup # =—§e|\/|}
IIXo—ZII o

= d[Inf {|| %o —z|; zeM}] ™"
—q.1
d

=1.
Thus f is a linear functional on My such that
f(M) = {0}, f(xo) =d and ||f|| = 1. (%)

Hence by Hahn Banach Theorem, there exists a functional f, on the whole
space N such that

f(y) = fo(y) V yeMo and |[[f]| = [[foll
Thus from (*)

fo(M) = {0}, fo(xo) = d and ||fo|| =

Riesz — Representation Theorem for Bounded Linear
Functionals on L

Let F be a bounded linear function on L?, 1 < p < «. Then there is a function g

in LY such that

F(f) = If g, felL,isarbitrary.
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Proof: Let F be a bounded linear functional on L", 1 < p < o. We put
() = {1for0£x<8
OforS<x<1
and show that
D(S) = F(xs(x))
is absolutely continuous For this purpose, let {(Si, t;)} be any finite collection

of non — overlapping subintervals of [0, 1] of total length less than 8.
Then

> () - @(S)|
| L]0(t) (S|
2 [00) - (5,)]

[D(t) - D(Si)]

n

= Z sgn [©(t) - D(Si)] [D(L) - D(Si)]
= F{Zn: sgn [, (%) - s (0] [x, (¥) - x5 X1}
SIFIIY. sn [z, 09 - 75 001 Lz, 9 - 25 COTH

=l F {fol Ii sgn [, () - 25, 001 [z, () - 5, 001 P dx 3.

p

If we take & = HEW then it follows that total variation of ® is less than

over any finite collection of disjoint intervals of total length less than &. Thus
@ is absolutely continuous

Also we know that a function F is absolutely continuous iff it is indefinite
integral. Therefore 3 an integrable function g such that

S
WOENK:
Thus

1 1if xe$S
Flxs) = [9xs where ys = {o  xeS

Since every step function on [0, 1] is [equal except at a finite number of pts to]
to a suitable linear combination Z¢; y s , we must have

Fu) = [ *)

For each step function v by the linearity of F and of the integral.

Let f be any bounded measurable function on [0, 1] [hence Lebesgue
integrable]. Then it follows that there is a sequence < \, > of step functions
which converges almost everywhere to f. Since the sequence < | f -y, [P > is
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uniformly bounded and tends to zero almost every where by the bounded
convergence theorem [Let < fn > be a sequence of measurable functions
defined on a set E os finite measure and suppose that there is a real number M
s. that

| fn(x) | < M for all n and all x . If f(x) = lim fn (x) for each x in E, then
j leimj fn ] implies that || f - y, ||, — 0 Since F is bounded and
E E

| F(F) = FQwn) [ = [F(E-wn) [<ITF - wnllp
we must have

F(f) = lim F(yn) (**)

Since g v, is always less than | g | times the uniform bound for the sequence <
Wn >, we have

I fg:IimI g n (***)

by the Lebesgue convergence theorem (Let g be integrable over E and let < fn
> be a sequence of measurable functions such that | fn | < g on E and for almost
all x in E we have f(x) = lim fn(x)

Then I f:IimJ fn.
E E

Consequently, we must have
(*) [ fg=F(®) using (=), (*), (**)
for each bounded measurable function f. Since

[FE) < TF I ],

we have gin Lgand || g |lq < || F || by the Lemma which states that “Let g be an
integrable function on [0, 1] and suppose that there is a constant M such that |

I fg|<M]| fl|, for all bounded measurable function f. then g isin L% and || g

|l < M” thus we have only to show that F(f) = I f g for each f in LP. Let f be

an arbitrary function in L”. Then there is for each € > 0, a step function  such
that || f-w|lp<e.Since vy is bounded , we have

Fw) = | wg
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Hence
IF®- | fgl=IFO-Fw+ [ wg- | fgl
<[FE-w) [+ | (v-Dgl

<IFINT-wib+1gllallf-wl

<[IFN+1gll]e.
Since € is an arbitrary number, we must have

F(f):j fg

Riesz — Representation theorem for bounded linear functional on C[a, b].
Theorem: Let F € C*[a, b]. Then there exists a function g € B V [a, b]
[bounded variation] such that for all f € C[a, b].

F(H = [ f(t) gt
Such that

IF1I=V(9)

where V(g) denotes the total variation of g(t).
Proof: If we view CJa, b] as a subspace of BJ[a, b], by Hahn — Banach theorem,
there exists a bounded linear functional F, defined on all of B[a, b], defined

extending F and such that || Fo || = || F ||. Define the characteristic function
) = lfora<x<t
A 0fort<x<b

Obviously, for each such t,

xi(X) € B[a, b]

with Fq the extension of F, we now define a function g(t) by

Fo[x:()] = 9(0).

We partition the interval [a, b] into

and consider the sum
| 9(t) — 9(ti0) |
i=1

Putting
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la(t;)—g(tiy) |
[9(ti) —g(ti_)]

ci=sgn [g(t) —g(ti-)] =

we obtain
|9(t) —9(ti) | = D, ei [ 9(t) —g(ti0) ]
i=1 i=1
= Y ei[Folxy)~Folxe, 0)
i=1
:FO[ Z ei(Xti-Xti,l)]
i=1
Therefore
lg) —gtid) [<IFoll 1D i (g%, |l
i=1 i=1
= FIl
because IFoll=lIFlland || > i (g% ) 151
i=1
Hence

1> To®) - gt < [F

that is g(t) is of bounded variation.
Also it follows that

V(@) <|fll 1)

Suppose now that f € C[a, b] and define
Zo® =, ft) [x, () -1, ]
i=1
Where the sequence < Z, — (t) > converges strongly to f(t) i.e. || Z,—f|| — 0.
Then the equality,

Fo(Zn) = f(t) [9(t) — 9(ti-0) ]

n
i=1

Implies that

f(t) [9(t) — 9(ti-1) ]

n
n— oo n i=1

= [0 f(t) dg(v
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by the definition of Riemann — Stieltjes integral. Since the sequence < Z(t) >
converges strongly to f(t) i.e. || Z, — f || — 0 and Fop is a bounded (or
continuous) linear functional and therefore cont, this implies that

Fo(Zn) — Fo(f)
Therefore

Folf) = [ f(t) dg(t).

Now since f was an arbitrary continuous function on [a, b] and Fy must agree
with F on CJ[a, b], we can write

F(f) = jb f(t) dg(t) forany f < C[a, b] ?)
From (2), we have

IF® =1 [ ) do(t) |

max
< telab] [0 |- V(9)-

=1 £11'V(9)
= || 1 V() forall f € C[a, b]
Taking sup || f|| < 1, we have
I F Il <V(9) (3)
From (1) and (3), it follows that

IF1I=V(9).

113



114

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS

Unit-111
Second Conjugate Spaces

We know that the conjugate space N* of a normed linear space N is itself a
normed linear space. As R and C are normed linear spaces, we can form the
conjugate space (N*)* of N* and denote this by N** and call it the second
conjugate or dual space of N. The importance of N** lies in the fact that each
vector x in N give rise to a functional F, in N** and that there exists an
isometric isomorphism of N into N** called the natural imbedding of N into
N**,

The following definition will be required to establish natural imbedding of N in
N**,

Definition :- Let N and N’ be normed linear spaces. Then a one to one linear
transformation T : N—N’ of N in N’ is called isometric isomorphism of N into
N’ if

[[Tx]| = ||x|| for every x in N.

Further if there exists an, isometric isomorphism of N onto N’, then N is said to
isometrically isomorphic to N'.

We now show that to each vector xeN, there is a functional Fy in N**,
Hence we prove the following result.

Theorem :- Let N be an arbitrary normed linear space. Then for each vector
xeN, the scalar valued function F« defined by

Fx(f) = f(X) vV feN*

is a continuous linear functional in N** and the mapping x—Fy is then an
isometric isomorphism of N into N**.

Proof :- Let N be an arbitrary normed linear space. Let x be a vector in N,
consider the scalar valued function Fy defined by

F«(f)=f(x) V¥ feN*
We assert that Fy is linear. In fact

Fx(of + Bg) = (af + Bg) (x)
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= o f(x) + Bg(x) = aFx(f) + BF(9)
Now computing the norm of Fy, we have
[IFxl = sup {IFx(H)I ; IIfll < 1}

=sup {[fCI 5 [Ifll < 1}

< sup {[If[l [Ix[] 5 Ifl] < 1}

< [IxI (1)
Therefore F4 is bounded and a continuous linear functional on N*. [Fy is
called the functional on N* induced by the vector x and is referred to as
induced functional]
Now define a mapping ¢ : N—>N**
by d(x)=Fx V¥ xeN.

Clearly ¢ is one to one, since

o(x) = d(y) = Fx=Fy

— Fx(f) = Fy(f) V feN*
= f(x) = f(y)
= f(x-y)=0 =x-y=0 =x=yY.

Let x, yeN, then for all scalars o and 3,

d(ax + BY) = Faxepy
If feN* then
Fax+py(f) = f(ax+By)
= af(x) + pf(y)
= o F(f) + B(Ry(F)
= (aFy) () + (BFy) (f)
=(aF+tBR) ()

= o Fy + BF,
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Thus
Fox+py = o Fx + BFy
and hence
= d(ax + By) = o Fx + B Fy=a ¢(x) + P(Y)

which shows that ¢ is linear
Moreover by (1)

IO = 1Pl < x| -(2)

Also we know that if x is a non-zero vector in N, then there exists a functional
fo in N* such that fo(X) = ||x|| and ||fo] = 1. So

| X |1 = fo(x) < sup {Ifo(x)| ; focN* and ||fol| = 1}
= sup{|Fx(fo)l ; IIfoll = 1}
> =140 | -6

XA <11 60 Il

Thus from (2) and (3)

6C = [Ix[| ¥ xeN.
= ¢ is an isometry.
It follows therefore that x—F is an isometric isomorphism of N into N**.
Remark :- This isometric isomorphism is called the natural imbedding of N
into N**, for we may regard N as a part’ of N** without altering any of its
structure as a normed linear space and we write

N < N**,
Reflexive Spaces

Definition :- A normed linear space N is said to be reflexive if N = N**

The space |, and |, for 1 < p < oo are reflexive since I, = l; =
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Remark :- Every reflexive space is a Banach space since N** is a complete
space. But a Banach space may be non-reflexive space for ex. C[0, 1] is a
Banach space but it is not reflexive.

Example :- (I7)*=14

=12, 2=k

where

i 1/p
" :{x:(xl,xz,--.,xn),u <= $1 ) }

1 = {x= 0l x =1 1

1" =fx = (X))l x| = max |x;
= ()l X = e}

Solution :- Let L be the linear space of n—triples x = (X1, Xa,..., Xp).
If {1, €2,..., en} is a natural basis of L

[e1=(1,0,0,...)e2=(0, 1,...) e3=(0, 0, 1,...)]
Then x = X1€1 + X262 +...+ Xp€n
If f is any linear functional on L i.e. A scalar valued linear function

f(x) = f(X1€1 +...+ Xn€n)

= f(x1€1) +...+ f(xn €n)

f(x) = x1 f(e1) +...+ x, f(en)
where x;'s are scalars.
Put f(e1) = yi..., f(en) = yn, then

(Y1,..., yn) Is @an n-tuples of scalars. Thus
n
f(x) = _leiYi v x=(X)r eL.
1=

is a linear functional
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since f(x + x") = % (Xi +Xi") i
1

= % (Xiyi + Xi'i)

= % XiYit+ % Xi"Yi
1 1

- f(x) + f(X)

Similarly f(ax) = % oXiyi = o % Xiyi=oaf(x) Vo scalar.
1 1

Thus we have a 1-1, onto mapping defined by

y= (ylv Y2,...s yn) —>F

where fel* yel
Thus algebraically L' = L

By defining a suitable norm, say the norm

n 1/p
x| = (z| xf’ |j on L to make it I," space, the L’ space of all
1
continuous functionals is equal to (Ig)*, where the norm of f is given by

Ifil = Inf {k ; k>0 and [fO)| < k x|} = xel,".

It is sufficient to show that what norm of y = (y,..., yn) makes the mapping
y<f an isometric isomorphism].

Case | :-when1<p <o,

Then we can show that (17)*=1g

n 1p
E @ X |j v xely
If f is continuous linear functional

100 = ‘%xiyi \
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n
< % IXi Vil

1/p n 1/q
( |xi|pj [_z|yi|qj
i=1 i=1

[By using Holder’s inequality]

M=

n 1/q
110 < [gll Y, |‘*j x|

Thus we have

n 1/q
TE (glyi |‘*)

since [f(x)| < [|f]] [I]

{n f|= Inf [Z' Vi @uq}

For the other inequality consider the vector x defined by

X;j=0 if Vi= 0
|
and Xj = M otherwise.
Yi

)= 2xy =3y; I°
i=1 i=1

foo] 2Vl
X B n p
x| (prj
i=1
Sy [
=1

= ' since |yi|*™ = |xi|

n 1/p
[2| Y, |p<q-”j
i=1
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Sy [
— i=1
n 1/p
[zwi ﬂ
=1
n 1—1 n 1/q
:[zwi |QJ pz[zwi |QJ
i=1 i=1
f n 1/q
. OS] i

So for particular choice of x, we have

n 1/q
o 1001 = (_zl| Y, |‘*) Il < I
i=
n 1/q
5 (_zl| Y, |‘*) <]
i=

Thus necessarily, we have
n 1/q
m=($ye) st soxely  srer

Case2:-Whenp=1, (If)*=1].
Here we have
n
Xl = 3| %;| where[xel/
i=1

It follows that

100)] = ‘%xiyi

n
£§:|Xiyi|

SIXi il
1

IA

n
max|y; [> x|  VX= (X, ..x) €l
I<i<n 1
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Since we know
[FO| < [If]] 1]

we see that [[f|| < max]y; |
1<i<n
Now max|y; | = |y« say for some, k, 1 <k <n.
I<i<n

Choose an x = (Xg,..., Xn)

such that xj=0 ifizk

_ Iyl

Yk

Note that f = 0, then 3 y; = 0 such that yi = 0.

| Vi |-y

k

Thus [f(x)| = ‘%xiyi‘ = = Yy | by definition of x.
1

IIfll = sup[F(X) | = [y«

[Ix]I=1
since (OOMJ has norm 1.
Yk
= Il > max | yi|
= Ifll= max] yi|

So we have (I7)*=1".

Case 3 :- 2y =17.

where IX]| = max|xi|
I<i<n

we have f(x) = %xi Yi
1

7001 = ‘%xiyi

§§|Xi||Yi|
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= max | il zly. |
Since [f(x)| < [[f]| [Ix]]
n
= [If]] < gl Yil

consider the vector x defined by

xi=0ify;=0.
|y, | otherwise
Yi

we have If(x)| = |y,3|/xy, Z lyi |

i=1 i

=
|| x|l Imax{lx i |y. |
L|<n
n
Zly. .
= Zly. |
maxly'
1<i<n y
= )| = %Iyi |11 <[] 1
= %Iyi | <|[fll
Thus
Ifl= Syl where felf
1
Thus (I0)* =

Remark :- A normed linear space may be complete without being reflexive as
we will see



SIGNED MEASURE 123

Co)* =1

where Cy = {space of all convergent sequences converges to zero} and
(Co)* =1 ==1,

Thus Cy is not a reflexive. But Cy is complete space.

Theorem :- C[0, 1] is not regular [reflexive]

Proof :- Here C[0, 1] denotes the set of all real continuous functions

X = X(t) on [0, 1] and

1 1/2
and x| = u| x(t) |? dtj

Note that C[0, 1] is not a Banach space under this norm.

Assume that C[0, 1] is regular. An arbitrary linear functional F(f) defined on
the space V of all functions of bounded variation. Then must have the form Fy
(f) = f(x) for suitably chosen xcCJ[0, 1]. Recalling the general form of
functional C[0, 1], we can write for an arbitrary F(f),

Fx(f) = f(x) = ix(t) df(t) (1)

where f(t) denotes the function of bounded variation associated with the
functional f(x) € C[0, 1]. The functional

Fuo (0=t +0) - ft0-0) )

assigns to every function f(t) of bounded variation, it jump at the point to.
Obviously, FXo (F) is additive and

| Fxo (] = [f(to + 0) —f (t-0)|

1
< var(f) =||f||
0

implies the boundedness of Fro () and the fact that norm of Feo (f) can not be
greater than 1. Also Feo (f) = 0 that is to say it is sufficient to consider Feo (f1)
with
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0 forO<t<t
G
ort, <t<1

Because of (1), a continuous function X(t) can be found such that

Fio (=] Xo (0 () L
By (*) we have
Fyo (f0) =0
for fo(t) :} X (t)dt
0

because fy(t) is continuous on [0, 1]. But on the other hand
1 1
Fyo (fo) = g Xo (t)df (1) :(IJ Xo()dt >0

because xo(t) = 0. This is a contradiction. Therefore C[0, 1] can not be regular
(reflexive)

Uniform Boundedness Principle

The following theorem i.e. Uniform Boundedness Principle enables us to
determine whether the norms of a given collection of bounded linear
transformations {T;} have a finite least upper bound or equivalently if there is
some uniform bound for the set (||Til|).

So we prove the following results :

Theorem 1: (Banach-Steinhaus or Uniform Boundedness Principle) Let B be a
Banach space and N a normed linear space. If {Ti} is a non empty set of
continuous linear transformations of B into N with the property that {T;(xX)} is
a bounded subset of N for each vector in B, then (||Ti||) is a bounded set of

numbers that is {T;} is bounded as a subset of B(B, N).
Proof : For each positive integer n, let
Fo={x;xeBand| Tix)| <nforalli}

we claim that F;, is a closed subset of B. To show this let y be a limit point of
Fn. Then there exists X € Fysuchthat x #yand || X —y || < 6. But since T;
are continuous , we have
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[ Ti(x) - Ti(y) [| <€ whenever || x—y||<8.
Now Ti(y) =Ti(y —x +X)
and so I Tity) I = [ Tiy = x) + Ti(x) |
<[ Tily =x) [+ [ Ti(x) |l
=1 Tiy) = TiCx) [ + 11 Ti(x) |l
<e+n whenever || x-y| <&

<n.

Hence y € F,. Thus F, is closed. Also by our assumption

F

n
1

B=

n=
Since B is complete , using Baire’s Theorem , we see that one of the F, , say
F,, has non — empty interior and thus contains a closed sphere So with centre Xo

and radius ro > 0. Therefore each vector in every set T;(Sp) has norm less than
or equal to ng , that is || Ti(So) || < no.

Clearly Sp — Xo is the closed sphere with radius ro centred on the origin and so

— X, . . . .
Se=X is the closed unit sphere S. Since Xp is in Sp , we have

r-0
Il Ti(So — o) I| = [| Ti(So) — Ti(Xo) |
< || Ti(SoO || + || Ti(xo) |l
<nNg+hnp=2ng.
This yields

S, — X 2n
I TiS) I =1Ti ( 0 Oj E—
r‘O r0

and therefore

I Till=sup {UTiS) I NIS<1}

{Zno}
<sup {50
rO
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= 2N for every i.
I‘-O
which completes the proof of the theorem.

Consequences of Uniform Boundedness Principle
We prove some consequence of Banach — Steinhaus Theorem (Uniform
Boundedness Principle) having several applications in analysis.

Theorem 2: A non empty subset X of a normed linear space N is bounded if
and only if f(X) is a bounded set of numbers for each f in N*.

Proof : Since [f(x)| < || f||. || x || , it follows that if X is bounded , then f(X) is
also bounded for each f.

To prove the converse , we write X = {x;}. We now use natural imbedding to
map X to the subset {F, } of N**. The assumption that f(X) = {f(x;)} is

bounded for each f implies that for {F, (f)}is bounded for each f. Moreover
since N* is complete , uniform boundedness theorem shows that {F, }is a

bounded subset of N**. Since natural imbedding preserves norms , therefore X
is evidently a bounded subset of N. This completes the proof of the theorem.

Theorem 3: Let X be a Banach space and Y , a normed linear space. Let {T,}
be a sequence of terms from B (X, Y) covering strongly to T. Then there exists
a positive constant M such that | Tn || < M for all n.

Proof : Since Tn§>T,then
lim T, x =TX forall x.
n

This in turn implies that

sup
" | Ta(X) || < 0 for all x .

Now using uniform boundedness principle , we must have

Su
P Tl < 0.

and therefore the theorem is proved.

Definition : Let {T,} be a sequence of linear transformation from B(X, Y).
Then {T,} is said to be a strong Cauchy sequence if the sequence {T,(x)} is a
Cauchy sequence for all x € X.
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Further a space B(X, Y) is said to be complete in the strong sense if every
strong Cauchy sequence in R(X, Y) converges strongly to some member of the
space.

We now prove the following :

Theorem 4: If the spaces X and Y are each Banach spaces , then B(X, Y) is
complete in the strong sense.

Proof : Let < T, > be a strong Cauchy sequence in B(X , Y).We must show

that there is some element T of B(X , Y) to which < T, > converges strongly.
Since < T, > is a strong Cauchy sequence , it follows by definition that for any
X € X < T, x > is a Cauchy sequence of elements of Y. Since Y is a Banach
space, the limit of this sequence must exist in Y. Thus for any x € X, the
function

Tx = lim T, x (1)
n

Is defined. Clearly, T is linear transformation and (1) is equivalent to saying
that

T, —>T.

It remains to show that T is a bounded linear transformation. Since X is a
Banach space and < T, > converges strongly to T, theorem 3 implies that

| Th]| <M, forall nand some positive constant M.
Since for any x € X, we can say

I Tax <[ Tall. %Il
this implies that
ITa ) NI<M I x]]

for any x and every n. Since it is true for every n, it must also be true in the
limit. Thus

lipﬂ I Ta®) 1< M || x|
Since norm is continuous , we have
lim
II ) Tox|[<M .| x]]

or | TX[[ <M. |Ix]||
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for every x. Hence T is bounded. Thus we have shown that every strong
Cauchy sequence in  B(X , Y) converges strongly to some element T of

B(X, Y). Hence B(X , Y) is complete in the strong sense and the proof is
complete.

We now define what is meant by a week Cauchy sequence of elements of the
normed linear space X.

Definition : The sequence of element {x,} of the normed linear space x is said
to be a weak Cauchy sequence if < f(x,) > is a Cauchy sequence of elements
for al f € X*, the conjugate space of X.

Theorem 5: In a normed linear space X , every Cauchy sequence is bounded.

Proof : Let < x, > be a weak Cauchy sequence of elements of a normed linear
space X. This means that < f(x;) > is a Cauchy sequence for all f ¢ X*. We
recall the natural imbedding

¢ X —> X**
X —=> Fy

where Fy(f) = f(x) for all x € X and f € X*. ¢ is a bounded linear functional
satisfying

160 11 =1 x|l forall x e X.

Since < f(x,) > is a Cauchy sequence of complex numbers , for any f € X* , we
have

sup sup
| B, (1= " [f(xn) [< 0 (1)
n n

But X* is a Banach space. Therefore by Uniform Bounded Principle (1) yields

sup

[ F(xn) [| < o0

n
Since I F =1 0n) 1= 1 X

sup

therefore R | Xn || < o0

Hence the weak Cauchy sequence {x,} is bounded. This completes the proof.
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Theorem 6: In a normed linear space X, if the sequence < x, > converges
wegkly to x , that is Xn — X, then there exists some positive constant m
such that [| X, || < m for all n.

Proof : we note that if
NRLL 'S

then certainly < x, > is a weak Cauchy sequence , Hence by Theorem 5, { x, }
is bounded , that is || X, || < m for constant m and the proof is complete.

After having introduced the definition of weak Cauchy sequence , we give the
following definition of weak completeness of a space.

Definition : A normed linear space X is said to be weakly complete if every
Cauchy sequence of elements of X converges weak to some other member of
X.

Our next theorem shows that any reflexive space is weakly complete.

Theorem 7: If the normed linear space X is reflexive , then it is also weakly
complete.

Proof : Suppose < x, > is a weak Cauchy sequence of elements of X. this
means that < f(x,) > is a Cauchy sequence for all f € X*. Now we consider
natural imbedding

¢ X — X**
X = Fx

This mapping implies that < F, (f) > is a cauchy sequence of scalars for all f

€ X*. Since the underlying field is either real or complex (each of which is
complete metric space)

This implies that the functional y defined on X** by
lim
y(f) = o F., ()

exist for every f € X*. It can be verified that y is linear. We shall now show
that y is a bounded linear functional.

Since || F, || = || X || and < x, > is a Cauchy sequence , it follows by
theorem 5, that there is some positive number M such that

| Xn || £ M.
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for all n, this implies that
| B, D1 =1Fa) <111 % ll
<M. f]
forany f € X* and all n. Hence it is true in the limit that is

lim| F, () [<M]|f]
= |limF_®[<M.|f]|

or ly®) [<M]I 1| using (1)

forall f e X* and all n.

This however implies that y is a bounded linear functional or that y € X**.
Since X is reflexive there must be some x € X that we can identify with y that
IS , there must be some x € X such that y=Fx.

Hence for any f € X* , we can say
lim lim
fxi) = F (f)
n n

=y(f)
= F«(f)
=f(x)
Since this holds for any f € X* , we have
Xn Yo X .

Thus we have shown that each weak Cauchy sequence of elements of X
converges weakly to some other member of X. Hence X is weakly complete
and the proof of the theorem is complete.

Open Mapping Theorem and its applications
First we present some definitions which will be required in the sequel.

Definition :- If T : V=W is a linear transformation, then the set N of all

vectors xeV such that Tx =0 is called the null space (or kernel) of T.
Thus
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N = {xeV; Tx =0} = T }{0}

Also Tx; = TXy < T(X1 — X2) = 0 < X3 —X2€N and that if xeN, then Tx =0 so
that if T is injective (one to one). Thus we have shown that T is injective if and
only if N = {0}.

Now suppose that X and Y are normed linear spaces and T : X—X is a
continuous linear mapping. Let XoeN (null space of T) and let x,—»x. Since T
is continuous Tx,—>Tx thus Tx = lim Tx, = lim 0 = 0. Hence xeN. This
proves that if T : X—Y is continuous, then null space of T is closed.

Definition :- Let X and Y be normed linear spaces. Then a linear mapping T :
X—Y will be called open mapping if it maps open sets into open set.

Definition :- The mapping T : X — Y where X and Y are normed spaces as
will be called a homeomorphism if it is bijective, continuous and open or
equivalently T : X—Y is a homeomorphism if it is bijective and
bi-continuous.

Definition :- Let E be a normed linear space. A subset A of E is called no-

where dense in E if A has an empty interior. Q is everywhere dense in R
while integers are nowhere dense in R. Thus a nowhere dense set is thought of
a set which does not cover much of the space.

Baire Category Theorem :- It states that a complete space can not be covered
by any sequence of no-where dense sets.

Open mapping Theorem or Interior Mapping Principle
First of all, we prove a Lemma

Lemma :- Let B and B’ be Banach spaces. If T is a continuous linear
transformation of B onto B’, then the image of each open sphere centred on the
origin in B contains an open sphere centred on the origin, in B’.

Proof :- Let S; and S’ be open spheres with radius r centred on the origin in B
and B’ respectively. Then

T(Sy) =T(rSy) =r T(Sy)
So, it is sufficient to show that T(S;) contains some S;'.

We first prove that T(S;) contains some S,”. Since T is onto, we note that

B = TS

n=1
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Being a Banach space, B’ is complete and so by Baire’s theorem, some

T(S,,) has an interior point yo lying in T(S;, ). Since the mapping y—y-yo is
a homeomorphism of B onto itself. T(S;,)-Yo has the origin as an interior
point. Since yo is in T(S;,,) we have

T(Sny) — Yo < T(Szn0)

which in turn implies that

T(Sno) —Yo= T(Sno) —Yo & T(SZnO)

which shows that the origin is an interior point of T(S,,,). As we know that
multiplication by any non-zero scalar is a homeomorphism of E’ onto itself. So

T(Szn0) =2n0T(S)) = ZnO-TSl)

and hence the origin is also an interior point of T(S;). Thus S_ = T(S,) for
some positive number €. We complete the proof by showing that S’
< T(S;) which is equivalent to S’c/, « T(Sy).

Let yeB' be such that |ly|[<e. Since yisin T(S,), there exists a vector x; in B

such that ||x4]| < 1 and ||y—y1||<§, where y; = T(X1). Further S'cp < T(S;;,)
and |ly-yil| <§, there exists a vector x, in B such that ||| <% and [|(y-y1)
—Yol| <§ where y, = T(X2), continuing in this way, we get a sequence <x,> in

B such that ||x,| <% and

ly—(ys + Y2 +...% yo) | <2%

where y, = T(Xp). Let Sy =X; +Xo+...+ Xy, then
[ISall = [IX1 + X2 +..+ Xall

< [Xall + [l ... [l

<l+l+_ﬁ <2
2

2[‘]—1
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Also for n > m, we have
[[Sn=Sml| = [Xm+1 + Xms2 +...+ X
< Xl + [Xemee2l| +.. . [l

1 1 1
< 2_m+2m+1 Tt 2n—1

= 2“%‘1 [1— an_m }—) 0 as m, n—oo.

Hence {Sn} is a Cauchy sequence in B and since B is complete, there exists a
vector X in B such hat

lim S, =xand so

N—o0
[IX]| = Jllim Sp|| = lim ||Sq| <2< 3
which implies that xS;. Now
Vit VYot Fyn=T(X) + T(X2) +...+ T(xp)
since T is continuous, x = lim S,

= Tx = lim (TSy)
n

=lim(y; +y2+...t yn)
= TxX=y
Thus y = Tx where ||x|| < 3 so that yeT(Ss)
Hence we have proved that
ye S'c = ye T(Sg) and so S’'c < T[S3]
Statement of Open Mapping Theorem.

Let B and B’ be Banach spaces. If T is a continuous linear transformation of B
onto B’, then T is an open mapping. (Thus if the mapping T is also one to one,
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then T~* is continuous).

Proof of Theorem :- It is sufficient to show that if G, is an open set in B, then
T(G) is also open in B’. To show it let yeT(G) we shall show that y is an
interior point of T(G) i.e. there exists an open sphere centered on y and
contained in T(G). Let x be a point in G such that y = Tx. Since G is open, X
is an interior point of G.

Therefore x is the centre of an open sphere written in the form x = Sr,
contained in G. Hence by the above Lemma, T(S;) contains some sphere

S'rl. Then y+S'rl IS an open sphere centred on y.

Moreover y+ S'rl cy+T(S)

=T(x) + T(S)

=T(x + Sr)

c T(G)
Hence y + S‘rl is an open sphere centred on y and contained in T(G).
Consequently T(G) is open. Hence the result.

Theorem :- A one to one continuous linear transformations of one Banach
space onto another is a homeomorphism.

Proof :- The given hypothesis yields that the linear transformation is bijective
and continuous. Further by open mapping theorem, the linear transformation is
also open. Hence it is homeomorphism.

Projections on Banach spaces

Definition :- Let L be a vector space. We say that X is the direct sum of its
subspace say M and N; if every element z<L has a unique representation z = x
+ywithxinMandyin N. Insuch a case we write L = M® N.

Define a mapping P : L—L by P(z) = x. Then P is a linear transformation, then
(1) P(z) =zifand only if zeM

(2) P(z) =0ifand only if zeN

(3) P is idempotent that is P> = P. Infact

P2(z) = P(P(z2)) = P(X) = X = P(2).
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Such a linear mapping P is called a projection on the linear space L.
Thus if L is the direct sum of its subspaces M and N, then there exists a linear
transformation P which is idempotent.

But, however in case of Banach spaces, more is required of a projection than
more linearity and idempotence we have

Definition :- A projection on a Banach space is a projection on B in the
algebraic sense (linear and idempotent) which is also continuous.

It follows from the above discussion that if B is the direct sum of its
subspaces M and N, then there exists a linear transformation P which is
idempotent. Further we have

Theorem :- If P is a projection on a Banach space B, and if M and N are its
range and null space, then M and N are closed linear subspaces of B such that
B = M®&N

Proof :- We are given that P is a projection on a Banach space B and M and N
are range and null spaces of P. Thus P is linear, continuous and idempotent
and

M =range of P = {P(2); zeB}
N = null space of P ={z ; P(z) = 0}
Letz €B. Consider
z=P(z) + (1-P)z (1)

where | denotes the identity transformation on B such that I(z) = z for all zeB.
Clearly P(z) is in M and since P is idempotent, we have

P{(I-P) ()} = {P(I-P)} (2)
=P-P®
=(P-P)(2)=0(2) =0
It follows therefore that (I-P) (z) €N, the null space of P. Therefore equation
(1) gives a de composition of z according to the subspaces M and N. This

decomposition is unique because if we have another representation as z = x +
y, XeM, yeN, then

P(z) = P(X) =x

and (I-P) () = 1(z) — P(2)

135
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=z-X
=Yy

Thus B = M®N. We know that the null space of a continuous linear
transformation is closed. Therefore continuity of P implies that N is closed.
Further, since M = {P(2); zeB} = {x ;P(X) = x}

= M= {x; (I-P)(x) = 0}

It follows that M is the null space of continuous linear transformation 1-P and
hence closed. Thus M and N are closed and B = M @ N. Hence the result.

As an application of open mapping theorem, we have

Theorem :- Let B be a Banach space and let M and N be closed linear
subspaces of B such that B =M @ N. If z = x +y is the unique representation
of a vector in B as the sum of vectors in M and N, then the mapping P defined
by P(z) = x is a projection on B whose range and null space are M and N.

Proof :- Let P : B—B be defined by P(z) = x for z=x +y, xeM, yeN. Then
since P(z) = x for zeB, we have M to be the range of P. Also P(y) = 0 for
yeN. Therefore N is the null space of P.

Further
P?(z) = P(P(2)) = P(x) =X = P(2)

Implies that P is idempotent. Hence to prove that P is a projection on B, it only
remains to show that P is continuous. Let

z=x+Yy,xeM,yeN

be unique representation of the elements of the Banach space B. Define a new
norm on B by

lizll” = {11l + iyl

and let B’ denote the linear space B equipped with this new norm, then B’ is a
Banach space and since

IP@I= I < Il + Iyl = [|zI

It follows that P in continuous as a mapping of B’ into, B. It is therefore
sufficient to show that B and B’ are homeomorphic. Let T denote the identity
mapping of B’ onto B. Then

IT@II = lizll =[x +y[l < X[+ {lyll = [zII"
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Shows that T is one to one continuous linear transformation of B’ onto B.
Open mapping theorem now implies that T is a homeomorphism. Thus B and
B’ are homeomorphic. Hence P : B—B is continuous and therefore a
projection on B.

Closed Linear Transformations and Closed Graph Theorem

Let X and Y be normed linear spaces. Then the Cartesian product X x Y of X
and Y becomes a normed linear space under the norm defined by

1< W= X[+ iyl

Further if X and Y are Banach spaces, then XxY is also a Banach space w.r.t.
the norm defined above.

Definition :- Let T : BxB’ be a linear transformation of a Banach space into
another Banach space B’. Then the collection of ordered pairs.

Gr={(Xx, TX); (X, TX) € BxB'}
is called the graph of T. It can be shown that G+ is a linear subspace of BxB'.

Definition :- Let X and Y be normed linear spaces and let D be a subspace of
X. Then the linear transformation T : D—Y is called closed if {x,}<D, lim x,
n

=xand lim Tx,=yeY imply xeD and y = Tx.
n

As justification for the name given closed transformation in the above
definition, we now show that a linear transformation T is closed iff its graph
Gr is a closed subspace of XxY.

Theorem A :- A linear transformation is closed iff its graph is a closed
subspace.

Proof :- Let X and Y be normed linear spaces and let D be a subspace of X.
Suppose first that T : DY is a closed linear transformation. To show that
Gr is closed, we must show that any limit point of Gt is actually a member of
Gt. Therefore there must be a sequence of points of G, (X, TXp), XneD
converging to (X, y), this is equivalent to

[I(Xn, TXn) = (X, Y)||—>0
or [|(Xn—X, TXn—Y)||—0
or [IXn—XI| + [[TXn ~Y||=0

= Xp—X and Tx,—y
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Since T is closed, this implies that xeD and y = Tx.
Therefore we can write that

(X, ¥) = (X, TX)eGr
= Every limit pt (X, y) of Gy is a member of Gr.
= Gr is closed.

Conversely suppose that Gt is closed, and let Xx,—X, X,€D, for all n as Tx,—y.
We must show that xeD and y = Tx. The condition implies that

(Xn, TXn)—>(X, ) € G
Since Gt is closed we have

Gt = G and thus we have.

(X! y) eGT

But by the definition of Gr, this means that xeD and y = TX. Hence T is a
closed linear transformation. This completes the proof of the theorem. The
next things we wish to investigate is when a bounded (continuous)
transformation is closed. Infact, we prove.

Theorem B :- Let X and Y be normed linear spaces and let D be a closed
subspace of X If T : D—Y is bounded, then T is closed.

Proof :- D is a closed subspace of X and T : D—Y is bounded. If <x,>is a
convergent sequence of points of D such that Tx,—Y, then D being closed, the
limit of the sequence <x,> must belong to D. On the other hand, the continuity
(boundedness) of T implies that Tx,—>Tx. Hence y = Tx. (since Tx,—Y). Thus
T becomes closed. Hence the result.

An immediate consequence of the theorem is of the following :

Corollary :- Suppose T is linear transformation from a normed linear space X
into another normed linear space Y. If T is continuous, then T is closed. Also
then using Theorem A, Gr is closed.

Proof :- We know that the entire space X is always closed, therefore Theorem
B applies and the result follows.

Theorem C :- Let X and Y be normed linear spaces and let D be a subspace of
X. If T: D>Y is a closed linear transformation, then T *(if exists) is also a
closed linear transformation.
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Proof :- Since T is closed, its graph.
Gt ={(x, Tx); xeD}

is closed, let T(D) denote the range of T. Since T™* exists, for any yeT(D),
there is a unique xeD such that y = Tx or x = T-}(y). Therefore graph of T can
be written as

Gr={(T"':y); yeT(D)}
Consider now the mapping
XxY =Y x X

x,y) = (¥, X)

This mapping is isometry, since Isometrics map closed sets into closed sets and
the set {(T'y; y) yeT(D)} is closed. It follows that the set {(y, Tly)
yeT(D)}is also closed. But this last set is just the graph of T™*. Thus we have
proved that that graph of T~* is closed or hence T is closed by Theorem A.

Theorem D :- Let D be a subspace of a normed linear space X and let T:D—>Y
be a linear transformation from D into a Banach space Y. If T is closed and
bounded, then D is a closed subspace of X.

Proof :- It is sufficient to show that any limit point of D is also a member of D.
Hence suppose that x is a limit point of D. This means that there must be some
sequence {x,} of points of D such that x,—x. Consider now

ITX0=TXenll < [T} [Xn—=Xeml]
Since [[Xp—Xm||—>0 as n, m—ao
as every convergent sequence is Cauchy.

It follows that <Tx,> is a Cauchy sequence in Y. But Y being a Banach space
is complete. Therefore there exists yeY such that

TX—Y.

Thus we have x,—X and Tx,—Y. Now since T is closed. This implies that
xeD. Hence D contains all its limit points and hence closed. This completes
the proof of the theorem.

We now state and prove Closed Graph Theorem.

Closed Graph Theorem
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Theorem :- Let B and B’ be Banach spaces and let T : B—B’ be a linear
transformation. Then graph of T is closed if and only if T is continuous.

Proof :- Suppose first that T is continuous. Then Corollary to Theorem B
implies that Gr is closed.

Conversely suppose that Gt is closed. Since B and B’ are Banach spaces. It
follows that BxB’ is a Banach space. Since closed subsets of a complete
metric space must be complete, it follows that Gt (being closed) is Banach
space too. Now consider the mapping

f:Gr—B
defined by  f(x, Tx) =x

clearly f is a linear transformation. We claim further that f is bounded. To
prove this, we note that

IO, TN = [IXI] < [Ix[] =+ [T
=[x, ™|

which implies that f is a bounded linear transformation. Further f(Gt) = B and
therefore f is onto. We shall show that f is one to one. Also we know that a
linear transformation is one-to-one if its kernel (null space) consists of identity
element only. Therefore. We need to prove that (0, 0) is the only element f
maps into zero. Hence, suppose

f(x, TX) =x=0.
But x = 0 implies that Tx = 0 and so
(x, TX) = (0, 0)

and hence f is one to one. Thus f : Gr—B is bijective and therefore f* exists.
Now Gt and B and Banach spaces and f is a continuous linear transformation
and f is continuous. To complete the proof we must show that if x,—>X, then
Tx,—Tx. [T is continuous]. Hence suppose that X,—X.

Since f! is continuous, we have

fix,—fx,
= (Xn, TXn) = (X, TX)
= (Xn—X, Tx,—Tx) — (0, 0)

= TX,—>Tx
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Thus T is continuous. Hence the result.
Equivalent Norms

Suppose X is a vector space over the scalar field F and suppose that ||.||; and
|||l are each norms on X, Then ||.||1 is said to be equivalent to ||.|| written as
IIllz ~ |I-|l2, if 3 positive numbers a and b such that

al|x <Xl <b || x| for all xeX.

This relation is an equivalence relation on the set of all norms over a given
space. Further, if two norms are equivalent, then certainly if <x,> is a Cauchy
sequence with respect to ||.||1 it must also be a cauchy sequence with respect to
|I.Il2 and vice-versa.

Let a basis for he finite dimensional space be [X1, Xa,..., xp]. For any

- - n
xeX, there exist unique scalars ay, o,..., oy such that x = 3 i Xi. Now || X [|o
i=1
= max|a;| is indeed a norm. This norm is called Zeroth Norm. We
1
Theorem :- On a finite dimensional space, all norms are equivalent.

Proof :- We shall show that all norms are equivalent by showing that any norm
is equivalent to the particular norm defined above and called the Zeroth norm.

Let a basis for the finite dimensional space X is given by
Xl, X2,. .oy Xn.
For any xe X; there exist unique scalars ou, dy,..., o, such that

x:_izl o Xi ()

Now I X lo= miax |oil

is indeed a norm.

Now let || || be any norm on X. We want to find real numbers a, b > 0 such
that (1) is satisfied, where || ||, is replaced by || . || and || . ||, is replaced by || ||o.

The right hand side of (1) easily satisfies

al[xli=<{xllz<b x|k

(D]

since from (*)
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n
Ix = H_zlaixi
i=

n
<z Jouil [ X |
i=

n
< maxfoi| ¥ [ Xl
i ia

n
<o 2 il

because, since the basis is fixed, we can take as the number b

n
b=3% [xil
i=1
to get for any xe X,
I xI<bllxll

The left side of (1) does not follow quite as simply. Consider the simple case
of a one-dimensional space with basis x;. Any vector in the space X can be
written uniquely as

X =01 X1
for some o1F. Hence
I A1 = To I %2 ll =1 X {lo [ Xa |

Thus in this case, the number a on the left side of (1) can be taken to be just ||
X1 || Having verified this, we shall now proceed by induction, suppose the
theorem is true for all spaces of dimension less than or equal to n—1. We can
now say that, if dim X = n, with basis {xi, X2..., x,} and

M = [{Xl, X2,euuy Xn—l}]
be the subspace spanned by the first n—1 basis vectors, then

1~ 11 Tlo

in M. Since this is so, if {yn} is a cauchy sequence of elements from M w.r.t.
to || ||, then {yn} is also a cauchy sequence with respect to || |lo. Consider the
ith term of this sequence now :

Yi= o1 xp + oW xp + .+ Otﬂzl Xn-1

By the above



SIGNED MEASURE

Il Yn=Ymllo — 0 as n, m—o0 .2
since {yn} is a cauchy sequence.

Bt [lyn — Ymllo = mjax|oq‘“’ —oy™)

which by (2) implies
o™ — ;™| — 0 (as n, m—0) (3

forj=1,2,...,n-1. Since F =R or C, and each is complete and (3) states that
if the {o;™} is a cauchy sequence, there must exist o, oiz,..., aneF such that

Otj(m) —-0;(G=12,..,n-1)

In view of this, it is clear that
-1
Ym—DY = 2 i Xi
=1

with respect to the zeroth norm. Further

ll1lo llell
Ym=2>Y=>Ym—>Y

Thus under the induction hypothesis, are have shown that subspace M is
complete with respect to an arbitrary norm which immediately implies that it is
closed.

Furthermore, from the above, we see that this statement will be true for
any finite dimensional subspace of a normed space. Consider the nth basis
vector X, now and from the set

Xn+ M ={Xp+z|zeM}

Since forany y, z eM,

[ Xn +Z = (Xn + Y)I| = || Z-Y]|
Since x, + M is seen to be isometric to M under the mapping z—x,+z. Hence
since M is closed, X, + M must be closed as well which implies that C(x, +
M) is open, [where C(x, + M) is the complement of x, + M] we now contend
that

0gx,+M

for if it did, we would be able to write for some B4, B2,..., Bn-1 € F,
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0 =Xn+ B1 X1+ BaXo + ...+ Bno1 Xn-1, Which is ridiculous. Also
0 is a point of the open set C(x, + M); Hence there must be a whole nbd of zero
lying entirely within C(x,+M)). In other words, there must exist C, > 0 such
that for any

X € Xy + M, || X=0|| = C,,. 0 € C(xn +M)

[Note that here we say that the distance from any point X, + M to zero is
positive].

Thus forall o €F (i=1, ..., n-1),
”O(.l X1+ 0 Xo+ ...+ Op-1 Xn=1 + Xn || > Cp,

04 Qp_g
=X F e X+ X,

n an

or > C,

which implies for any a,€F, that
|lota X1 + 02 X2 +...4 otn Xn|| = |otn| Cn
because we can write for o, = 0,
Suppose now that we had not taken
M = [{Xq, X2,..., Xn-1}]
but had taken instead
[{X1, X2..., Xi-1, Xist,..., Xn}]

since the only fact about M was that its dimension was n—1. It is clear that in
an analogous fashion we could have arrived at some c; > 0 such that

” o X1 +...+ an Xn” >C;i |0Li|
foranyi=1,2,...,n. In view of this we can say for any
n
i=1

|| o X1 + 0tp X2 ...+ oty Xal| = MINC; max| o; | =minC; || x |lo
| | |

This completes the proof of since a = min C; is positive.
I
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Corollary 1 :- If X is any finite dimensional normed linear space, X is
complete [since all norms are equivalent].

Corollary 2 :- If X is a normed linear space and M is any finite dimensional
subspace, M is closed.

Theorem :- Suppose A : X—Y, where X and Y are normed linear spaces. If X
is finite dimensional, A is bounded.

Proof :- Suppose dim X = n, that a basis for X is given by
X1, X2,..., Xp.
In view of this for any xe X, scalars o, o..., oy such that

n
X=X
i=1

and A is linear, we have

n
AX =3 aj AX;
i=1
n
Letting K= |Axi|, we have
i=1
n
1A= |5 o
1=
n
<z Jouil || Axil
=
<1 % flo- K.
since I X [lo = max ol
1

Since all norms in a finite dimensional space are equivalent and A is bounded
with respect to zeroth norm, it follows that A must be a bounded linear
transformation no matter what norm is chosen for X.

Weak and Strong convergence

Definition: If || T,— T || — 0, then we say that the sequence < T, > of operators
(or linear transformation) converges to T and this convergence’s is called
convergence in norm or strong convergence. The linear transformation T is
said to be the strong limit of the sequence < T, >. Also <T,>issaid to
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converge weakly towards the linear transformation T if the sequence < Tp(X)
> converges to Tx.

Definition: Let E be a normed linear space, < X, > a sequence of elements of E
and xo € E. if the sequence f(x,) — f(xo) as n — o for all functionals
f € E*, then <X, > is said to converge weakly to X, and we write

Xn V—\‘) Xo-
Xo is called the weak limit of the sequence < X, >.

Remark: A sequence can not converge weakly to two different limits, that is
the weak limit of a seque,,ce is unique.
We suppose that Xn —> Xo and xy—> Yo i.e f(xn) — f(Xo) and f(x,) — f(yo)
for an arbitrary linear f. Then

f(xo) = f(yo) , Or

f(Xo—Yo) =0
Now if we choose an fo with || fo || = 1 and fo(Xo — Yo) = || Xo — Yo ||, then we

have

IXo—Yo||=0ie.  Xo=Yo

Prop: Let N be a normed linear space and (x,) < N. Then X, — X in norm

implies :>xnw—>x )
Proof: | f(Xn) = f(X) | = | f(Xn — X) |
<|[Fll| X=X || >0asn—
[since x, — x in norm ¥ f € N*]
=>Xnw X

Remark: Thus by above prop, norm convergence or strong convergence —
Weak convergence.

But the weak convergence need not imply strong convergence. However in a
finite dimensional normed linear space, the two convergences are equivalent.

Theorem : In a finite dimensional space, the notion of weak and strong
convergence are equivalent.

Proof: Since strong convergence = weak convergence always.

For the converse suppose < x, > converges weakly where i. e. f(x,) > f(x) vV f
€ E* and E is of finite dimensional. Since E is finite dimensional, 3 a finite

system of linearly independent elements ey, e,,...... ,ek and every x € E can be
represented in the form
X=E&er+&0. + i, + Ex ex

withreal &3, &, ,...... , €k . Thus

Xn=&1 (m e1+& (m Bt i + Ex ) €k
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Now we consider such functionals f; € E* for which fi(e;) = 1 and fi(ex) = 0 for
k #i. Thus fi(x,) = &™and fi(xo) = & @

But since the sequence f(x,) — f(xo) for every linear functional f, so also
fi (Xn) — fi(Xo) that is

01,9 fori=1,2,.....k
Let M be the greatest of the numbers |lei || i =1, 2, ...., k) i. e. M = Max || ¢ ||.
Then for any given

e >0, 3an ngs. that

0 S
R VI

foralli=1,2,....,k and n > no. Thus

k
=% 1= 1> (& -&@)es
i=1
k
< > IET -5 e
<e.

Hence the sequence < X, > converges strongly to Xg .
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Unit-1V

Compact Operations on Normed
Spaces

Definition:- Let X and Y be normed spaces. An operator T : X—Y is called a
compact linear operator (or completely continuous linear operator) if T is linear
and if for every bounded subset M of X, the image T(M) is relatively compact

that is the closure T(M) is compact.

Remark:- Many linear operators in analysis are compact. A systematic theory
of compact linear operators emerged from the theory of integral equations of
the form

(T=AlD) x(s) = y(s) where Tx(s) = tj) K(s, t) x(t)dt.

where e is a parameter, y and kernel K are given functions (subject to
certain conditions) and x is the unknown function. Such equations also play a
role in the theory of ordinary and partial differential equations. The term
compact is suggested by the definition. The older term completely continuous
can be motivated by the following Lemma which shows that a compact linear
operator is continuous but the converse is not generally true.

Relation of Compact and continuous linear operator
Theorem 1. Let X and Y be normed spaces. Then
(a) Every compact linear operator T : X—Y is bounded, hence continuous

(b) If dim X = oo, the identity operator | : X—X (which is continuous) is not
compact.

Proof (a) Since the unit sphere U = {xeX : || x || = 1}is bounded and T is
compact, so by definition T(U) is compact. Now since every normed space is

metric space and by the result “Every compact subset of a metric space is
closed and bounded.” so that

sup|| Tx || <oo.
[Ix]}=L
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Hence T is bounded. But by the result “Let T : D(T)—Y be a linear operator,
where D(T)c X and X, Y are normed spaces. Then

(1) T is continuous if and only if T is bounded.
(2) If T is continuous at a single point, T is continuous”.

Thus T is continuous. Hence every compact linear operator T : X—Y is
bounded and hence continuous.

(b) Since the closed unit ball M = {xeX; ||x|| < 1} is bounded. If dim X = o,
then by the result “If a normed space X has the property that the closed unit
ball M = {x ;|| x || <1} is compact, then X is finite dimensional” M can not be
compact. Thus I(M) =M =M is not relatively compact.

Remark :- From the definition the compactness of a set, we obtain a useful
criterion for operators.

Theorem 2 :- Let X and Y be normed spaces and T : X—Y be linear operator.
Then T is compact if and only if it maps every bounded sequence <x,> in X
onto a sequence <Tx,>in Y which has a convergent subsequence.

Proof :- If T is compact and <x,> is bounded, then the closure of <Tx,>in Y is
compact. Since every normed space is metric space and by the definition, “a
metric space X is said to be compact if every sequence in X has a convergent
subsequence”. Thus <Tx,> contains a convergent subsequence.

Conversely assume that every bounded sequence <x,> contains a subsequence
<Xy, > such that <Tx, >convergesin Y. Consider any bounded subset B
< X, and let <y,> be any sequence in T(B). Then y, = Tx, for some x,B and
<Xp,> is bounded since B is bounded. But by assumption <Tx,> contains a
convergent subsequence. Hence by definition of compactness, T(B) is

compact. Since <y,> in T(B) was arbitrary. Thus by definition of compact
operator, T is compact.

Remark :- The sum T; + T, of two compact linear operators from normed
space X to normed space Y is compact. Similarly oT; is compact, where o is
any scalar. Thus the compact linear operators from X into Y form a vector
space.

Compactness of linear transformation on a finite dimensional space

Theorem 3 :- Let X and Y be normed spaces and T : X—Y a linear operator.
Then

(@) If T is bounded and dim T(X) < oo, the operator T is compact.
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(b) If dim X <oo, the operator T is compact.

Proof (a) :- Let <x,> be any bounded sequence in X. Then the inequality
|| TXnll < |[T || . |IXnl| sShows that <Tx,> is bounded. Now by the result “ In a
finite dimensional normed space X, any subset M — X is compact if and only if
M is closed and bounded” and dim (X) < oo implies that <Tx,> is relatively
compact. It follows that <Tx,> has a convergent subsequence. But by
Theorem 2, T : X—>Y is compact if and only if T maps every bounded
sequence <xp,> in X onto a sequence <Tx,> in Y which has a convergent
subsequence”. Hence the operator T is compact.

(b) Since we know that if a normed space X is finite dimensional then every
linear operator on X is bounded operator. Thus T is bounded. Also dim
X < . Now by the result “If T is a linear operator and dim D(T) = n<wo, then
dim R(T) < n “where D(T) and R(T) are domain and range of T.” Thus if dim
(X) < oo, then dim T(X) < oo. Now since dim T(X) < oo and T is bounded. It
follows by (a) part that the operator T is compact.

Compactness of the limit of the sequence of Compact Operators

Theorem 4 :- Let < T, > be a sequence of compact linear operators from a
normed space X into a Banach space Y. If < T, > is uniformly operator
convergent, say ||T, — T||—0, then the limit operator T is compact.

Proof :- Using a diagonal method, we show that for any bounded sequence
<Xm> in X, the image <Tx,> has a convergent subsequence and then apply
Theorem 2 i.e. “Let X and Y be normed spaces and T : X—Y, a linear
operator. Then T is compact if and only if it maps every bounded sequence
<Xp> in X onto a sequence <TX,> in Y which has a convergent subsequence.”

Since T; is compact, <xm> has a subsequence <x;m> such that <Tix;n> is
Cauchy. Similarly <x;,> has a subsequence <Xpn> such that <T, xpm> is
Cauchy.  Continuing in this way, we see that the diagonal sequence
<Ym> = <Xmm> IS a subsequence of <x,> such that for every fixed positive
integer n, the sequence <T, Ym>men is Cauchy. <x,> is bounded, say |[Xnm|| < ¢
for all m. Hence |lym|| < ¢ for all m. Let €>0. Since

Tm—T, thereis an n = p such that ||[T-T,|| < €/3c ..(1)

Since <T, Ym>men IS Cauchy, there is an N such that
S
Mo yi — Tp Yl <§ -(2)

(i, k> N)

Hence we obtain for j, K> N
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ITY; =Tyl < IITY; = To Yill + [ITp ¥i = To Yidl + ITp Yk = Tyi|

€
SIT=Tell - lisll += + 11T =TI vl

c e c .
< —.c+—+—.cC Using (1) and (2
” 3 T % (Using (1) and (2))

=€

This shows that <Tyy,> is cauchy and converges since Y is complete. But <y,>
is a subsequence of the arbitrary bounded sequence <x,>. Hence using
theorem 2, which states that “Let X and Y be normed spaces and T : XY, a
linear operator. Then T is compact if and only if it maps every bounded
sequence <xp,> in X onto a sequence <Tx,> in Y which has a convergent
subsequence,” we get that the operator T is compact.

Remark :- The above theorem states conditions under which to limit of a
sequence of compact linear operators is compact. This theorem is also
important as a tool for proving compactness of a given operator by exhibiting it
as the uniform operator limit of a sequence of compact linear operators.

Note that the present theorem becomes false if we replace uniform operator
convergence by strong operator convergence ||Tox — Tx||—0. This can be seen
from Ty, : 1°—1? defined by T(X) = (E4, ..., &n, 0, 0,...)

Where x = (&) el®. Since T, is linear and bounded, T, is compact by Theorem
3(a). Clearly T,x—>x = Ix but I is not compact since dim I? = .

The following example illustrates how the theorem can be used to prove
compactness of an operator.

Example (space I?). To prove compactness of T : I°—I* defined by y = (1)) =
Tx where m;=§&j/j for j=1,2,....

Solution :- T is linear. If x = (§)el? then y = (ny)el’. Let T, : I°>I* be
defined by

ToX = (&1,%2,%3,...,%”,0,0,...J

Ty is linear and bounded and is compact by Theorem 3(a), Further

0 ©« 1]
IT-ToXIF= X InilP= X S.1¢; P
1 j=n+l |

j=n+
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L1 g pe X
(h+D)2 ina 1 7 (n+1)2

Taking the supremum over all x of norm 1, we see that

1
[T=Tal| <—.
n+1

Hence T,—T and hence T is compact by the above Theorem 4.

Theorem 5 :- Let X and Y be normed spaces and T : X—Y a compact linear
operator. Suppose that <x,> in X is weakly convergent, say, X, ——sX. Then
<Tx,> is strongly convergent in Y and has the limity = Tx.

Proof :- We write y, = Tx, and y = Tx. First we show that
w
Yn——>Y. ..(D)
Then we show that

Yn—Y ...(2)

Let g be any bounded linear functional on Y. We define a functional f on X by
setting

f(z) = 9(T2) (zeX)
fis linear, f is bounded because T is compact, hence bounded and
[f@)1 = 19(T2)| < ligll - Tzl <ligll - IT1] - llzIl

By definition x,———>x implies f(x,) — f(x), hence by the definition, g
(Txn)—9g(Tx), that is, g(yn)—g(y) since g was arbitrary, this implies that
Yn ——>y which proves (1).

Now we prove (2). Assume that (2) does not hold. Then <y,> has a
subsequence <y, > such that

1Yo, =Yl =m --(3)

for some n >0. Since <x,> is weakly convergent, by the result “Let <x,> be a
weakly convergent sequence in a normed space X, say X,——>X, then the
sequence (||xn|) is bounded”. Thus <xy> is bounded and so is < x,,, >. Butby

Theorem 2, “Let X and Y be normed spaces and T : X—Y, a linear operator.
Then T is compact if and only if it maps every bounded sequence <x,> in X
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onto a sequence <TX,> in Y which has a convergent subsequence”, since the
operator T is compact, <Tx, > has a convergent subsequence say

<y;>.Lety; »y. Hencey; — Y. Since by the result “ Let <x,> be a

weakly convergent sequence in a normed space X, say X, ——>X, then every
subsequence of <x,> converges weakly to x”, Thus by this result and (1) we
have y =y. consequently

ly-yl—0

But IlV: -yll=n>0 [By (3)]

This contradicts, so that (2) must hold.
Closed Range Theorem

Definition:- Suppose X is a Banach space, M is a subspace of X and N is a
subspace of X* (Dual space of X) , neither M nor N is assumed to be closed.
Their annihilators M* and N* are defined as follows:
M* = {x* e X* <x,x*>=0 forallx ¢ M}
Nt={xeX,<x,x*>=0 forall x* e N}

Thus M* consists of all bounded linear functionals on X that vanish on M and
N is the subset of X on which every member of N vanishes. It is clear that M*
and N* are vector spaces. Since M* is the intersection of the null spaces of the
functionals, M~ is a weak* closed subspace of X*.

The weak*-topology of X* is by definition , the weakest one that makes all
functionals

X* — <X, X*>
continuous. Thus the norm topology of X* is stronger than its weak*-topology.

Notation:- If T maps X into Y, then the null space of T and range of T will be
denoted by N(T) and R(T) respectively

N(TM) ={xe X, Tx=0}

R(M ={yeY;Tx=y forsome x € X}.
Theorem :- If X and Y are Banach spaces and if T € B(X, Y) [set of bounded
or continuous linear operator] , then each of the following three conditions
implies the other two:

(@R(T)isclosedinY.

(b) M(T*) is weak*-closed in X*.
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() R(T*) is norm-closed in X*.

Proof: It is obvious that (b) implies (c). We will prove that (a) implies (b) and
that (c) implies (a).

Suppose (a) holds. Then N(T)™" is the weak closure of R(T*).

To prove (b), it is therefore enough to show that
N(T)" < R(T*)

Pick x* € N(T)*. Define a linear functional A on SR(T) by
ATX=<x,x*> (xeX)

Note that A is well defined for if T x =T x’, then x - x" € N(T) , hence
<X-X'",x*>=0

The open mapping theorem applies to
T: X > R(T)

since SR(T) is assumed to be a closed subspace of the complete space Y and is
therefore complete. It follows that there exists K < oo such that to each
y € R(T) correspondsan x € X with Tx =y, || x| <K]|ly|land

[AY[=[ATx[=][<x,x*>[<K][y][.[[x*]

Thus A is continuous. By the Hahn-Banach theorem some y* € Y* extends A.
Hence

<STX,Yy*>=ATXx=<X,X*> (X € X)

This implies x* = T* y*. Since x* was an arbitrary element of N(T)" , we have
shown that

N(T) < R(T*)
Thus (b) follows from (a).

Suppose next that (c) holds. Let Z be the closure of SR(T) in Y. Define some S
e B(X, Z) by setting Sx = Tx. Since R(S) is dense in Z.

Thus S*:Z7* 5> X*

is one-to-one.
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If z* € Z* , then by Hahn-extensions theorem, we get an extension y* of z*,
for every x € X,

<X, T*Yy*>=<TX,y*><SX,z*>=<x,S*z*>

Hence S* z* = T* y*. It follows that S* and T* have identical ranges. Since (c)
is assumed to hold. R(S*) is closed , hence complete.

Apply the open mapping theorem to
S*:Z* > R(S*)

Since S* is one to one , the conclusion is that there is a constant ¢ > 0 which
satisfies

cllzell<l|S*z* |
for every z* ¢ Z*.
Now using the following result

“Suppose U and V are the open unit balls in the Banach space X and Y ,
respectively. Suppose T € B(X,Y)andC >0,

(a) If the closure of T(U) contains cV , then
T(U)> ¢V

() Ifc||y*||<|| T*y* | foreveryy* c Y*, then
T(U) ocV.”
We have, S: X — Zisan open mapping, in particular S(X) = Z.
But R(T) = R(S) , by the definition of S.
Thus R(T) = Z, a closed subspace of Y.

This completes the proof that (c) implies (a).

Definition: An inner product space X or pre — Hilbert space is a complex
linear space together with an inner product (,) : X ® X — C such that
M x,y) = (y,x) [complex conjugate of (y, X)]

(i) A x +py, z) = A(x, 2) + uly, 2)
@) (x,x)=0and (x,x)=0iffx=0
condition (i) clearly reduces to (x, y) = (y, x) if X is real vector space. From (i)

and (ii), we obtain

(x,cy+dz)= (cy+dzx)
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=c(y,x) + d(z,x)
=c(x,y)+d (x2)

In any pre-Hilbert space, the following are immediate

@ (xy+tz)=(xy)+(K?2)

(B) (A= A(xy)

© 0y=x0)=0

@d xy.2)=x2-(y 2

Examples

1. Let C" be the vector space of n tuples. If x = (A1, A2,....., An) and
y = (ug,....., 1) define

(x,y) = M L

k=1
Then all the axioms for pre — Hilbert space are satisfied. This example is
known as n — dimensional unitary space and will be denoted by C". In this
space, the norm of x is defined by

NE (ZM |j

2. Let C(a, b) be the vector space of continuous functions defined on [a, b], a <
b. Define

xy)= | x@). yOt

With respect to this inner product, C[a, b] is a pre- Hilbert space. The norm of
x in CJ[a, b] is introduced by taking

b 1/2
N [ﬂ X dtj

3. Let P be the vector space of finitely non — zero sequences. If x = (Ax) and y =
(1), define

X Y)= 3 Ml
k=1

This space is a pre-Hilbert space with respect to this inner product. The norm
of x in this space is defined by
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. 1/2
%= (zl Ao |2)
k=1

Theorem 1 : Each Inner Product space is a normed linear space under
Il x || = (x, x)2 Since all the properties of norm are satisfied. We notice
that

@) 1Ix = x)"*=0
() [[x|=0=(x,x)=0  iffx=0
(i) | o X P = (@ X, o X)
=a a (X X)
=lafIx|?
=lax|[=]olllx]]
(iv) For x, y € X, we have
[X+y[P=X+y, X+y)=(XX+y)+ (Y, X+Y)
=X+, X))+ (X y)+(,y)
=(x,X)+ . Y+ XY+ (XY)
=X, X)+ (Y, y) +2R(X,Y)
<[IxP+IyIF+20xlyll

=(Ix I+ 1y

= Ix+yll<lIx{+yll
Therefore, each pre-Hilbert space is a normed linear space.

Theorem 2 : The Inner product (Scalar Product) is a continuous function with
respect to norm convergence. (Inner Product in an Hilbert space is jointly
continuous)

Proof: If x, — x and y, — Yy, then the number || X, ||, || yn || are bounded. Let M
be their upper bound. Then

| (Xny Yn) = (%, Y) [ = | (Xn, Yn) = (Xn, Y) + (%o, Y) = (X, Y) |
<] (X, Yn) = Xy Y) [+ (X0, ) = (X, ) |
= Yo=Y ) [+ (X=X, y) |
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<Xl lyn =y I+ 1% =x [y ]l (By
Schwarz inequality)

SMIya=y 1y HEx = x|
Now since || yn— Y || = 0 and || X, — X || = 0 as n — oo, therefore
| (Xn, Yn) — (X, ¥) | = 0 for n — o and hence (Xn, Yn) = (X, Y)
Thus inner product in a pre-Hilbert space is jointly continuous.

Theorem 3 (Cauchy - Schwarz Inequality): If x and y are any two vectors in

an inner product space, then
[ Y) =<yl

Proof: We have
(x+Ay,x+Ady) >0 for arbitrary complex A.
= (X, X+Ay) + Ay, X +Ady) >0
= (X X)+ 4 (X Y) + ALY, )+ 4 (v, y)] 0.
= X)+ 2 (X Y) MY, X)L A (Y, y)>0

—(x.y)

if we putis A = , then
(y,y)
(x0 ~ENOY) - xNX) 600 D )
VA% ,y) ,y)  (v.y)
P (X)L ) (y.%)
=) (v, y) (v, y) i A% =0
= (%) - LWE ((’;13;);2 >0
=1y F <X %) (y,y)
=[x 1y

=[Gy <Xy

Theorem 4 (Parallelogram Law): In an Hilbert space H,

Ix+ylP+Ix-ylP=2xIF+2lylF VxyeH.
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Proof: Writing out the expression on the left in terms of inner products.
Ix+y[P+lIx=y|F=(x+y,x+y)+(x-y,x=Y)
=)+ X Y)Y X))+ (YY) (X X) = (X Y) = (1, X) (Y, Y)
=2(x,x) +2(y,y)
=2|IxIF+2]ylf

Polarization Identity

Theorem 5 : In a pre — Hilbert space, (inner — product space)
1 . . . .
(x,y)= Z[IIX+yIIZ-IIX—y||2+I||X+IyII2—I Ix—iylF]

Proof: we note that
Ix+y [P =1XIP+ 1y 17+ y) + (v, %) D
Replace y by —y, iy by —iy and obtain
o Ix=yIF=1Ix P+ 1y IF = y) =)
Ix+iy [P =[x P+ [y P =i(x, y) +i(y, x)
Ix=iy [P = 1P+ 11y I +i(x y) = i(y, ¥)
It follows that
@) -l x=yIF=-IxIP- 1Ty P+ ) + (v, %)
@) illx +iy [P =il x [P +illy I* + (% y) = (¥, %)

@ il x—iy I? =il x [P =il y [P + (, ¥) = (¥, %)
Adding (1), (2), (3) and (4), we get

Ix+ylP-lIx=ylP+illx+iy[P=illx-iy[f=4(xy)
This completes the proof.

Definition: A complete pre — Hilbert space (Inner Product space) is called
Hilbert space. Thus a Banach space whose norm is generated by inner product
is called Hilbert space.
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Example: Denote by H, the set of all sequences x = (Ax) of complex number
such that

S [ MP<wo

k=1

If x = (Ax) and y = (L) are sequences belonging to H, then by the
parallelogram law for complex numbers,

| Mt i P+ [ - P =2 | P+ 2] e P
Hence

Yol <2 (P2 [l
k=1 k=1

k=1

for all n. Hence Z | A + e | < oo by the comparison test. Hence the
k=1
sequence (A + k) belongs to H , that is x + y € H. Furthermore if X = ()
belongs to H and A is a complex number, then > [And® = |4 P Y | P
k=1 k=1

shows that the sequence ( A Ax) is absolutely summable, it is denoted by A X.
With respect to the operations x + y and Ax , H becomes a linear space. We
also note that if x = (Ax) and y = (k) belong to H, then the series

>
k=1
converges absolutely. In fact, a and b are real numbers, (a — b)? > 0 leads to

ab < %(a2 +b?) and in particular, we have
- 1 2 2
|7hk#k|$§ I+ 1 a4 |

Thus Z | Ak E| converges by the comparison test.
k=1

This justifies the definition of the inner product for H as

o0

(X,Y):Z A L,

k=1

The axioms for a pre — Hilbert space are easily verified. The norm of an
element X in this space is defined by
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1
HE (iuk sz
k=1
It can be seen that
IAX=121- 1l
and that
Ix+ylP+lx=yl*=2]x|*+2]y|’

Thus to prove that H is a Hilbert space, it is sufficient to show that H is
complete.

Suppose X1, Xa,....., is a Cauchy sequence in H, that is || Xm — X, || > 0asm, n
—> o0, say Xn = (A )

Foreachk, |4 - &< > |4 - /1?|2=||Xm—xn I

j=1
shows that the sequence 4 , £ ,....., of k th components is Cauchy. Since the
complex numbers are complete, 4 — Ak as n — oo for suitable A. It will be

shown that Z | Ak [? < o0 and that < X, > converges to X = (A).
k=1

Let € > 0 be given. Let p be an index such that || Xm — X, || < € whenever m, n
> p. Fix any positive integer r, then we have

Z 14 - AP < Xn—Xa P < €

r
k=

-

provided m, n > p. Letting m — oo,

Y M- A<

k=

(5N

provided n > p, since r is arbitrary, we get

Z |a- AP<e  whenevern=p (1)
k=1
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o0

In particular, ¥ |- A <e

k=1
Hence the sequence < A« - A > belongs to H. Adding to it, the sequence < A >

of H, we obtain (A«) = x belongs to H. It follows from (1) that || x — X, | < €
whenever n > p. Thus X, — x and hence H is complete. This Hilbert space of
absolutely square summable sequences is denoted by I°.

Theorem 6 : In a pre — Hilbert space, every cauchy sequence is bounded.

Proof: Let < x, > be a cauchy sequence and let N be an index such that || X, —
Xm || <1 whenever m, n > N. If n > N, then

[0 [1'= 11 (¢ = xn) + Xn |

<X =Xn ||+ ] Xn |

<1+xnll

Thus if M is the largest of the numbers 1 + || Xn ||, || X2 ], ---- ... ) | XN |l we
have || X, || < M for all n. Hence < x, > is bounded.

Theorem 7: In any pre — Hilbert space, if < x, > and <y, > are Cauchy
sequence of vectors, then
{(< xn, Yo >)} is Cauchy (hence convergent) sequence of scalars.

Proof: By Cauchy — Schwarz inequality
| (Xny Yn) = Xmy Ym) | = | (Xn—=Xm, Yo = Ym) + Xm, Yo =Ym) + (X0 — Xm, Ym) |
< | (Xn = Xm, Yo = Ym) | + | Xm, Yo =Ym) | + | (Xn = Xm, Ym) |

< n=Xm [l ([ Yn = Ym [+ 11 Xm [ 1l Yo = Y Il + [ X0 = X [ {] Yim |

for all m and n. Since || X, || and || ym || are bounded. Therefore by the above
theorem, R. H. S. of the above inequality —0 ad m, n — oo. Therefore
{(xn, yn)} is cauchy sequence of scalars and hence convergent.

Remark: It follows from this theorem, that in a pre — Hilbert space if < x, > is
a Cauchy sequence, then (Xn, X,) and hence || X, || is a cauchy sequence of
scalars, and hence convergent.

It is clear from the definition that every Hilbert space is a Banach space. We
shall see that converse need not be true. The question arises under what
condition, a Banach space will become a Hilbert space. In this direction, we
have the following result.
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Theorem 8 : A Banach space is a Hilbert space < ||gm (parallelogram) law
holds.

Proof: Let H be a Hilbert space. Thus it is by definition, a Banach space whose
norm arises from the inner product taken as || x || = (x, x)*2

Then
IX+y P+ Ix=yIF=X+y,x+y)+(X-y,X-Y)
=% X) + (v, y) + (X, y) +(y, x) + (X, X)
+ (Y, y) = (X y) = (¥, %)
=2(x,x) + 2(y, y)
=2/IxIP+IyIP

Thus if H is a Hilbert space, then it is a Banach space satisfying || gm law.

Conversely suppose that H is a Banach space and that in H, ||gm law holds
good.

We define an inner product in H by
1 2 2
(nyF?ZHH+yH-HX—yH] D

Then (x, X) = 0 and (x, X) = 0 < x = 0 Moreover (x, x) = || x [|> and (X, y) = (y,
X).
It is only to show that

(Xl + X, y) = (Xl’ y) + (XZ’ y)
and (o X, y) =X, y)
by |lgm law, we note that

fusv+w|P+llu+v-w[f=2]u+v|f+2]w|’
and

lu-v+w|f+lu-v-w[*=2lu-v|F+2[w]
so that on substracting.

fu+tv+wf+lu+v-w|-[lu-v+w|*-]lu-v-
w [

=2flutviF-2]u-v|
= Uu+w,v)+Uu-w,v)=2(u,vV) [using (1)]

= (2u, v) (2

163



164 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS

Setting u = w, this implies
(2u, v) = 2(u, v)

Now let Xx; =u +w, X, =u—w and y = v to obtain.

(X1, y) + (X2, ¥) = (X1 + X2, y) [using (2)]

Similarly
@x,y)=a(x,y)
Thus a Banach space satisfying ||gm is a Hilbert space.

Example of a Banach space which is not Hilbert space

Example 1: We know that a Banach space is a Hilbert space if and only if
|lgm Law holds.

Consider the linear space Lj [0, 1] consisting of equivalence classes of
functions summable on [0, 1] w.r. to Lebesgue measure with the norm of f
c L4[0, 1] as

1

IIf||=f | (x) | dx 1)

0
L1[0, 1] is a Banach space under this norm.

We show that this norm does not satisfy || law and thus precludes the
possibility of viewing this space as a Hilbert space.

Consider the sets A = [0, %] and B = [% , 1] and the characteristic functions of

these sets x and xg. We note that (1) yields.

1
lxa+xe IP= (] lra+xel)’

0

1/2

1
=([ lxatxel+ | lxa*txsl)’
0

1/2
1 1T .,
= |24+ =1°=1
[2+2}

1
la+xe = (] lxa+xs )"
0
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1/2 1
— 2
=([ lxa*xel*+ [ lxa-zxel)
0

1/2
2
= 14_}) =1
2 2
2 2
1 1 1
But 2 24 2ol +2|= | == +
lalf+ beell [2) [2) :

Thus

=1

N |-

lxa+ e IF+11xa- 28 IF =2 xa I + 2l 2611

and therefore ||gm Law is not satisfied and hence L1[0, 1] is not a Hilbert
space.

Convex Sets

Definition: A convex set in a Banach space. B is a hon empty subset S such
that x,y € S= x(1 —t) +ty e S for every real number t satisfying 0 <t < 1.

If we putt= % , We see that

X,yeSD%eS.

Theorem 9 : A closed convex subset C of a Hilbert space H contains a unique
vector of smallest norm.

Proof:We know that being convex C is non empty and X,y € C = XZ Y cc.

Letd = Inf { ||x ||, x € C }. There exists a sequence {x,} of vectors such that

Xn + X,

| X, || = d. By the convexity of C, %o ZX” is in C. || | = d so
| Xn + Xn || > 2d. By |[[gm Law, we have
[ Xm + Xa [IZ + 11 X = Xa P = 2 [| Xen [P + 2 X0 |
= [1%Xm =X [ =2 [ X [P + 21 X [ - 1 X + Xa |1
< 2| Xm [P+ 2 || Xn |I? - 4d?

—2d?+2d°—4d*=0 [||x.||—>d]lasm,n— .
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Therefore {x,} is a Cauchy sequence in C. Since H is complete and C is
closed; C is complete and their exists a vector x in C such that x, — Xx. It is
clear by the fact that

X[ = [11im X [| = Tim || X, || = d

that x is a vector in C with smallest norm. To see that x is unique, suppose that

X
X" is a vector in C other than x which also has norm d. Then is also in

C and we have by ||gm law

XX o X IXIE X =X
I = + - |

II2 2 2 2

2 1|12
< IXIE I g
2 2

which contradicts the definition of d.

Orthogonal Complements

Definition: Two vectors x and y in a Hilbert space H are said to be orthogonal
written

xLyif(x,y)=0
Since (X,y) = (y, X) we have

x 1y <y L x ltisalso clear that x L 0 for every x. Moreover since (X, X) = ||
x |I%, 0 is the only vector orthogonal to itself,

if x Ly, then

Ix+yP=lx=ylF=[IxIF+yl’
(This is known as Pythagorean theorem).

Definition: A vector X is said to be orthogonal to a non empty set S (written as
x L S)ifx LyforeveryyeS.

Definition: The set of all vectors orthogonal to S is called orthogonal
complement of S and is denoted by S™.
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Theorem 10 : Let M be a closed linear subspace a Hilbert space H, let x ¢ M,
and let d be the distance from x to M. Then there exists a unique vector yp in M
such that

[ X—=yoll =d.

Proof: Let M be a closed linear subspace of H, x ¢ M and d be the distance
from x to M. Then

d=Inf{lIx-yl;yeM}
Select a sequence {y,} in M such that lim || X, — Y, || = d. Then by
parallelogram law n_m
1Ym = Yo 1P = 1 (Y —X) = (- X) .
=2l ym—x [P+ 2] ya—x|F
—Iym =) + (Y= |I*
=2l ym =X [P+ 20 Yo =X 1P - Il Y + Yo = 2¢ |

2
=2l ym—x P +2[ Yo —x |*- 4 =X -

Ym + ¥n
2

Since % e M, we have

—X|| >d.

Ym + ¥n
2

Therefore
| Ym = Yo P <2l Ym—X |7+ 2] yo— X | — 4d°
5 2d%+2d*° - 4d*>=0,m, n — .

Hence {y,} is a Cauchy sequence in a closed linear space of a complete space
H.

Therefore 3 an element y, € M such that

Yo = lim y,. Also
N—co

d= lim || X —ya|| =[x =limyn |
Nn—o

= x=yoll
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Uniqueness of yp : Suppose y; and y, are two vectors in M s. that
| X —yi||=dand| X -V, | =d. Then to show that y; = y,. Since M is a
subspace of H, therefore

(i+Ya) 1

y1,ygeM3 5

Hence by the definition of d, we have
X - %n > d's0 that || 2x — (y1 + y») || = 2d.

By parallelogram Law, we have
lI(x=y1) = (x=Y2)IFF = 2lx=Yall* + 2lx=yall* = [[(x=y1) + (x=¥2)IF
S y2=yilP =2 x=yillf + 2 [ x=y2 [P =[] 2x = (y1 + ¥2) |
<2d®+2d* - 4d*=0
Thus ||y, -yl <0. But ||y, — ya|f > 0
=>[Y-nll=0=Y-y1=0=>y1=Y..

Theorem: If M is a proper closed linear subspace of a Hilbert space H, then
there exists a non zero vector zg in H such that zg L M.

Proof: Since M is a proper linear subspace of H, then there is a vector x in H

which does not belong to M. Let d be distance from x to M. Then (by the above
theorem) there exists a vector yp in M such that

X -Yyoll =d.
Define zo =X — Yo
Since d > 0, zp is a non — zero vector, we shall show that zo 1. M. It is sufficient
to show that if y is an arbitrary vector in M

Thenzy Ly.

For any scalar a, we have

[zo-ayll=lx-(o+ay)llzd=]zl
>llzo-aylf-lzlf=0

= (Zo-ay zo-ay)-|[z]f>0
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= (20,20) = (20, Y) — oy, 20) + o Y, Y) ~ || 20> 0
=20 lF - oo, y) —aly, z0) + o Iy IF =l Z0|* =0
= ofzo, ) -aly, z0) +a Py |20 D
Set o = B (2o, y) for an arbitrary real number . Then (1) becomes
~2B 1@+ B @ y) PllyIF=0.

If we now put a = | (2o, y) |* and

b=y P we obtain
—2Ba+p?ab=0
ie. BaBb-2)>0 2)

for all real . However if a > 0, then (2) is obviously false for all sufficient
small +ve B. We see from this that a = 0 i.e. (zo, ¥) = 0 which implies that
Zo L y Hence the theorem.

Theorem 12 : If M and N are closed linear subspaces of a Hilbert space H
such that M L N, then the linear subspace M + N is also closed.

Proof: Let z be a limit point of M + N. It suffices to show that z € M + N. Let
< zp > be a sequence of points in M + N such that z, — z. By the assumption
that M L N, we see that M and N are disjoint, so each z, can be written
uniquely in the form z, = x, + y,, where X, € M and y, € N. For each € > 0,
there exists a +ve integer N such that

|| Zn—2zn||< € ¥ m,n>N(g)

= zZm—2zn | < €°

= || (Xm + Ym — (X0 + Yn) ||2< e
2 2

= | Xm—=Xn) + (Ym—Wn) ["< €

= [ Xm—Xn [P+ [ ym — Yo [P < €7

= [[Xm=Xnll<e,  Jlym=wnl<e.

Thus < x, > and <y, > are Cauchy sequences.
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But M and N are closed linear subspaces of H and therefore, complete. Hence
there exists vectors x and y in M and N respectively such that

Xn —>xandy, —y. Then
z=limzy=lim (X, +y,) = limx, +limy,=xtye M+ N..
Thus every limit point of M + N is in M + N and hence M + N is also closed.
Projection Theorem
Theorem 13. If M is a closed linear subspace of a Hilbert space H, then
H= M@ M"where M" = The set of all vectors orthogonal to M.

Proof. Since M and M* are orthogonal closed linear subspaces of H, by the
Previous — Theorem, M + M* is also a closed linear subspace of H . Moreover,
sinceM L M*, we have

M ~ M* = {0} . So itis sufficient to show that H = M + M* . If this is not so,
then M + M is a proper closed linear subspace of H and therefore 3 a vector zg
# 0 such that zo L (M + M™) which is possible only when zo L M and zy L (M
+ M™*) that is when zo € M* and z; € M that is when zo ¢ M ~ M. But
this is impossible since M- ~ M= {0} . HenceH= M+ M".
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UNIT -V

ORTHONORMAL SETS

Definition: A non empty subset {es, €y,.....en,....} of H is called orthonormal
if.

I #]

=]

0if i#]

0
(ei, &) = {1 e Kronoecker Delta §;; = {1

Thus orthonormal set consists of mutually orthogonal unit vectors [|| e || = 1
foreveryi].

If H contains only the zero vector, then it has no orthonormal sets. If H

. . . I X
contains a non — zero vector x and if we normalize x by consideringe = —

X1
then the single element set {e} is clearly an orthonormal set. In general if {x;}
IS a non empty set of orthogonal non — zero vector in H and if Xx;’s are

: . e .

normalized by replacing each of them by e; = m,Then the resulting set {ej}
i

is an orthonormal set. If should be noted that if < x; > is a non — empty set of

mutually orthogonal non — zero vectors in H and if in this set, each x; is

. : X; :
replaced by the corresponding unit vector e; = ”T'” then the resulting set {e;}
i

is an orthonormal set.

Example 1: The subset {ei, €,,..., en} Of I; where g; is the n- tuple with 1 in

the ith place and 0’s elsewhere, then {ey, €,,..., en} is an orthonormal set in this
space.

Example 2: If {e,} is a sequence with 1 in the nth place, and zero elsewhere,
then {e, e,,..., e} is an orthonormal set in I.

Theorem 1 : Let {e, es,..., en} be a finite orthonormal set in a Hilbert space
H, then

> (&) F<lxIP (1)

and further

X —Z (x,e)eile (2)

n
i=1
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Proof: The inequality (1) follows from the following computation.

o<| X—Z (x, &) & |

n
i=1

NE]

:(x_zn: (x,e) e, X- . (%, &) &)

—
Il

=02 (xe)e) - (e) -3 (@ e)e)

n
j=1 i=1

=00x-2 (e (ee) - (e[ x -2 (e (x.e)

n
=1 i=1

=}

n

= (X, x)—j . (%,8;) (X, &) - El (%, &) (i, X)

(x, &) (x,&;) (ei, &)

n
=1

Y

i=1 j

=IxIF- Y oe) (xe)- 3 (e (xey)

n
i=1

n
_ 2 2
=Ix =) T e)
i=1
s 2 2
=3 e F<]x]
i=1
Also we observe that

(x- é (X, &) €, &) = (X, &) — i% (X, &) (ei, &)

= (X, &) — (X, &)

=0.



SIGNED MEASURE

Hence
n -
X—3 (X,e)eLeforeachj.
i=1
Inequality (1) is called the special case of a more general inequality known as Bessel’s
Inequality.

Theorem 2 : If < e; > is an orthonormal set in a Hilbert space H and if x is any
vector in H, then the set S = { &;; (X, ;) = 0 } is either empty or countable.

Proof: For each positive integer n, consider the set

So={ei1| (x, &) > @}

. . . p
S, can not contain more than n — 1 vectors, since in that case > |(X, &) [* > || x
i=1

II> when p > (n — 1) and thus contradicts the above theorem. Also, each member

of S is contained in USn . But union of a countable collection of countable sets
n=1

is countable. Therefore GSH and hence S is countable.
n=1

Bessel’s Inequality

Theorem 3 : If < e; > is an orthonormal set in a Hilbert space H, then

> e P<lix]?

for every vector x € H.

Proof: Let S = { e;, (x, &) =0 }. If S is empty, then we define > | (x, &) [*to
be the number zero and the result is obvious in this case. We now assume that

S is non — empty. Then by the above theorem, it must be finite or countably
infinite. If S is finite, then it can be written in the form

S= { €1, €o,...., en}

for some +ve integer n. In this case, we define Z | (X, €i) |2 to be

> 1(x.e)

. The inequality to be proved now reduces to

2 2
| (x, &) "<l x|

n
i=1
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which has already been proved.
Now consider the case

S=1[e, (X e)=0]
is countably infinite.

Let the vectors in S be arranged in a definite order.

By the theory of absolutely convergent series, if Z |(x, en)P? converges, then
n=1

every series obtained from it by rearranging its terms and also converges and
all such series have the same sum. We, therefore, define = |(x, &j)° to be

o0

3 |(x, en)[? and it follows from the above remark that > 1(x, en) [Pisanon -
1 n=1

negative extended real number which depends only on S and not on the
arrangement of its vectors. We now observe that

S lxe) =Y kel

lim n
= (%, &)
n—so o4

lim ) 9
< X" =1 x|
n— oo

Hence
> 1 e) < x | forevery x € H.

Theorem 4 : If <e; > is an orthonormal set in a Hilbert space H, and if x is any
vector in H, then

X — Z (X, ei)eiLej
For each j.
Proof: we set

S={e, (X,e)=0}
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when S is empty, we define Z (X, &) ej to be the vector zero and then the

required result reduces to the statement that x — 0 = x is orthogonal to each e;,
which is precisely, what is meant by saying that S is empty.

When S is non — empty and finite, then it can be written in the form.

S=<eq€ .....,€n>

and we define Z (X, €j) e to be (X, &) e and in that case the required

n
i=1

result reducesto x — (X, ;) ei L e; which has already been proved.

n
i=1

We may assume for the remainder of proof that S is countably infinite. Let the
vectors in S be listed in a definite order S =<eq, e,,......... S €y eennnn >, We put

n

Sh= (X, &) ei and we note that for m > n, we have

i=1

ISm-Sa =l Y edelf= > [xe)F<lx P

i=n+1 i=n+1

Bessel’s inequality shows that the series Z | (x, en) |* converges and so < S, >

n=1

is a Cauchy in H and since H is complete, this sequence converges to a vector

o0

S, which we write in the form S= (X, en) en.

n=1

We now define Z (X, &) ej to be i (X, en) en (without considering the effect
n=1

of rearrangement) and observe that the required result follows from

n

X — (X, €i) ei L ej and the continuing of the inner product.
i=1

(x= > (x e)ei €)= (x-S, 8)
= (X, &) —(S, &)
= (X, ej) — (|Im Sh, e,-)
= (x, &) — [im(Sn, &)

= (X, &) — (x, &) =0.
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All that remains to show that this definition of Z (%, &) ej is valid in the

sense that it does not depend on the arrangement of vectors in S. Let the
vectors in S be rearranged in any manner;

We put S, = (x, f;) fi and we see as above that the sequence < f, >

i=1
converges to the limit S’, which we write in the form S’ = Z (x, fn) f, . We
n=1

conclude the proof by showing that S’ equals S. Let € > 0 be given and let ny
be +ve integer so large that if n > ng, then || S, — S| < e,and || Sy’ -S' || < €

o0
and Y | (x, &) | < €2 For some +ve integer mo > ng, all terms of Sno occur
i=n0+1

among those of S'_ ,s0 S' - S is a finite sum of terms of the form (x, ;)
Mo 0 No

m,

eifore=no+1,no+2,.... This yields || S\, - S, IP< 3 | (x &) <e?so
i=n0+1

| S .- S'no | < € and

m
IS -SH<IIS ~ Sy 141 Sy — Sy, lI+11S, ~Sli<e+e+ec=3e

Since < is arbitrary, this shows that S" = S.

Definition: An orthonormal set E = {e;} in a Hilbert space H is said to be
complete if the only vector orthogonal to all elements of E is zero. Thus an
orthonormal set < e; > is complete if there does not exist a single vector which
is orthogonal to all vectors in E, unless the vector is zero. That is, if it is not
possible to adjoin a vector e to < e; > in such a way that < ej, e > is an
orthonormal set which properly contains < g; >.

Theorem 5 : Every non — zero Hilbert space contains a complete orthonormal
set.

Proof: Let H be a non — zero Hilbert space and x € H, x = 0. Normalize x by

. X .
writing e = ——, then clearly < e > is an orthonormal set. It follows therefore

Ix1
that every non — zero Hilbert space surely contains orthonormal sets. Consider
the collection of all possible orthonormal sets in H, then the collection has a
maximal member M since by Zorn’s lemma, if P is partially ordered set in
which every chain has an upper bound, then P possesses a maximal element,

we shall show that M is complete. Suppose thaty = 0 and y L M then put
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we observe that M «w < z > is also an orthonormal set and thus contradicts the
maximality of M. Hencey L M only ify =0.

Theorem 6: Let H be a Hilbert space and let < e; > be an orthonormal set in H.
Then the following conditions are all equivalent to one another:

(1) <ei>is complete
2)x L<ei>=>x=0.

(3) If x is any arbitrary vector in H, then x = Z (%, &) &i.
(4) If x is any arbitrary vector in H, then || x [ =" | (x, &) [

Proof: (1) = (2), Let < g; > be complete, if (2) is not zero, then 3 a vector x =

, X : . :
0, such that x 1 < e; >. Define e = m the vector e(is a unit vector and) is

then orthogonal to each member of < e; >. Hence the set obtained by joining e
to < e; > becomes an orthonormal set containing < e; > {e, e; = 0} becomes an
orthonormal set containing < e; >. This contradicts the completeness of < g; >.
Hence X1<e>=x=0.

(2) = (3). Suppose that x 1. <e; > = x =0. Let x be an arbitrary element in H,
then x — 2 (X, ei) e is orthogonal to each e; for all j and therefore to < g; >.

Therefore (2) implies that x- > (x, ei)ei = 0

= X= (X8 e

(3) = (4). Suppose that x is an arbitrary vector in H such that x = Z (%, &) €.
Then by inner product, we have

IXIF=x=( (xe)e, D (xe)e)
= e { 2(xe)} e
=3 (xe) (xe)
=3 e
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(4) = (1). We are given that if x is an arbitrary vector in H, then

I x| = Z | (x, &) [°. Suppose that < e; > is not complete, then it is a proper

subset of an orthonormal set < e;, e >. Since e is orthogonal to all €;’s such that
|l el =1, we have

lelf=3 I e)f=0
=e=0
this contradicts the fact that e is a unit vector. Hence < e; > is complete.

Remark: If < e; > is a complete orthonormal set in a Hilbert space H and let x
be an arbitrary vector in H, then the numbers < x , e; > are called Fourier

coefficients of X, the expression x = 2 (X, &) e is called the Fourier
expansion of x and equation || x [ = > | (x, e) [ is called Parseval’s
equation.

Example: Consider the Hilbert space L,(0, 2 w). This space consists of all
complex functions defined on [0, 2n] which are Lebesgue measurable and

27

square integrable in the sense that I | f(x) | dx < .
0

Norm and Inner product in L,(0, 2x) are defined by

IFI= (] 1fe0 P ax )2

2x

(f.o)= [ f(x). g0 dx

0

A simple computation shows that the function €™ for n = 0, +1, +2..... are
mutually orthogonal in L.

o 0, m=n
J’ e|mx e-mx dx = _ #
: 27 ifm=n

It follows from this that the functions e, (n =0, +1, +2,.....) defined by

en(X) = €™ /27 from an orthonormal set in L,. For any function f in L, the
numbers
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2r

1 .
Ch=(fen)= — | f(x)e™dx 1
n=(fe) = j %) (1)
are its classical Fourier coefficients and Bessel’s inequality takes the form.
. 2
3 |cn|2gj | f(x) [ dx. < oo.
n=—c 0

It is a fact of very great importance in the theory of Fourier series that the
orthonormal set < e, > is complete in L,. As we have seen that for every f in
Lo, Bessel’s inequality can be strengthened to Parseval’s equation :

© 27
> IChF = 16 [ dx.
=~ 0

The previous theorem also tells us that the completeness of < e, > is equivalent
to the statement that each f in L, has a Fourier expansion

f(x) = % S Coe™

N=—ow0

Gram — Schmide Orthogonalization Process

Suppose that < Xg, Xp........ , Xn,.....> 1s a linearly independent set in a Hilbert
space H. Our aim is to convert it into the corresponding orthonormal set < e;,
€. ,en,....> with the property that for each n, the linear subspace of H is
spanned by < ey, e,...... s €nyeee™

Our first step is to normalize X by putting

Xl
[,

€=
Let us consider x, — (X2, €1) €. It is orthogonal to e; and we normalize this by
putting

- X (Xz,8)8
1%, = (%;, )8, |

Now e; and e, are orthogonal. Consider x3 — (X3, €1) 1 — (X3, €2) €. It is
orthogonal to e; and e,. We normalize it by

e, = X3_(X3’e1)e1_(x3’82)e2
)=
” X3 - (XS’el)el - (X3’e2)eZ "
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We see that (es, e1) = 0, (es, €2) = 0. Continuing this process, we obtain an
orthonormal set < ey, €s,.....,en,.....> with the required properties.

The Conjugate Space H*

Let H be a Hilbert space and H*, its conjugate space. Let y be a fixed vector in
H, Define a function f, on H by

fy(x)=(x,y) ¥xeH.
we assert that fy is linear, for
fy(x1 +X2) = (X1 + Xz, y) V Xy, X2 € H
= (X1, y) + (X2, Y)
= fy(x1) + fy(x2)
and (o) = (&%, )

=a(x, y) = afy(x))

Also G I=1 ) <X ATyl
(By Schwartz’s Inequality)

which proves that

Ify <1yl

which implies that fy is cont. Thus fy is linear and cont. mapping and hence is a
linear functional on H. On the other hand if y = 0, then

() =0 =0=[fy =yl
If y =0, then

[y Il =sup {100 |5 I x ([ =1}

y
fl—2—
y(Ilyll

y
——y
(Ilyll

v

v
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Hence

Ifyl=Nyll

Thus for each y < H. There is a linear functional f, € H* such that
Il =1yl

Hence the mapping y — fy is a norm preserving mapping of H into H*,

Riesz — Representation Theorem for Hilbert spaces

Theorem 7 : Let H be a Hilbert space and let f be an arbitrary functional in
H*. Then there exists a unique vector y in H such that f(x) = (x, y) for every x
in H.

Proof: We shall show first that if such a y exists, then it is necessarily unique.
Let y’" be another vector in H such that f(x) = (x, y’). Then clearly (x, y) = (X,
y)ie. (X, y-Yy’) =0 forall x in H. Since zero is the only vector orthogonal to
every vector, this implies that y — y’ = 0 which implies that y' = y.

Now we turn to the existence of such vector y. If f = 0, then it clearly suffices
to choose y = 0. We may therefore assume that f = 0. The null space
M = {x € H; f(x) = 0} is thus a proper closed linear subspace of H and
therefore there exists a non — zero vector y, in H which is orthogonal to M. We
show that if o is a suitably chosen scalar, then the vector y = o yp meets our
requirements. If x € M, then whatever values of o may be, we have

f(x) = (X, o yo) = 0.
We now choose X = Y. Then we must have
f(yo) = (Yo, a0 Yo) = (Yo, Yo) = ot [l yo %

and therefore we must choose our scalar o such that

o= 100 o oo F00)
Iyl Iyl
Therefore it follows that the vector o yo = % Yo satisfies the required

condition for each x € M and for x = yp. Each x in H can be written in the form
X =m+ f3 Yo, m € M. For this all that is necessary is to choose 8 in such a way

that f(x - B yo) = f(x) - B f(yo) = 0 and this is justified by putting g = ff((;))..
0
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Now we show that the conclusion of the theorem holds for each x in H. For
this, we have

f(x) = f(m + B yo) = f(m) + B f(yo)
=(m,y) + B(Yo, ¥)
=(M+BYoYy)=(XY)

Remark: It follows from this theorem that the norm preserving mapping of H
into H* defined by y — f, where fy(X) = (X, y) is actually a mapping of H
onto H*.

Remark: It would be pleasant if y — fy, were also a linear mapping. This is not
quite true, however, for

f, +f,="f, +f, andfy,= afy (1)

Also it follows from (1), that the mapping y — fy is an isometry, for
I fx=Fy [[= 1 ey 1= I X =y -
The Adjoint of an operator

Let y be a vector in a Hilbert space H and fy its corresponding functional in H*.
Operate with T* on f, to obtain a functional f, = T* f, and return to its
corresponding vector z in H. There are three mappings under consideration
here (H — H* — H* — H) and we are forming their product:

y—->fy->T*f,=f,>z Q)
An operator T* defined on H by

T*(y)=z
is called adjoint of operator T.

The same symbol is used for the adjoint of T as for its conjugate because these
two mappings are actually the same if H and H* are identified by means of
natural correspondence. It is easy to keep track of whether T* signifies the
conjugate or the adjoint of T by noticing whether it operates on functionals or
on vectors.

Let x be an arbitrary vector in H. Then we have
(T* ) (%) = 1,(T(x)) = (T(x), y)

(T 1) (x) = f(x) = (x, 2) = (x, T*y)

and
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so that
(Tx,y)=(x, T*y) forall xandy.

The adjoint of an operator T is unique, for let T’ be another operator on H. such
that

(Tx,y)=(x, T'y) forallx,y e H.

=X T y)=(xTYy)

>X T*y-T'y)=0.

=>T*y-T'y=0=>T*y=T'y VyeH.

ST =T

We now prove that T* actually is an operator on H (all we know so far is that it
maps H into itself) for any y and z and for all x in H, we have

X T*ay+B2)=(Tx ay+p2)

a(Tx, y)+ B(TX,2)

alx, T*y) + B(x, T*2)

X, aT*y)+ (X, T*2)
=X, aT*y+pT*2)
Hence T* is linear. It remains to show that T* is cont. To prove this, we note
that
[Ty P =Ty, T*y) = (TT*y,)
<ITT*ylllyll
<ITHIT=y Iyl
which impliesthat || T*y || < || T |||yl
for all y and therefore

T <ITl

Hence T* is cont. It follows therefore that T — T* is a mapping of B(H) into
itself. This mapping is called the adjoint operator on 3(H).
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Theorem 8 : The adjoint operator T — T* on 3(H) has the following
properties:

Q) (Te+T)*=T*+T,*

2 @T)*= aT*

() (Ty T)*=T* Ty*

@ T**=T

GIT==1TI
@T<TI=(T|*

for all scalars . and Ty, T, T2 € B(H).

Proof: To prove (1), we have
X T+ T)*y) = (T + T2) X, y)
=(Tix+T2xy)
=(Tix,y) +(T2x,y)
= (X T"y) + (x, T2*y)
=X T*y+To*y)
=% (T*+T2%)y)

= (T1 + Tz)* =T*+ To*

(2) If x € H, then
% (@T)*y)=(aTXy)
= (T X, y) = a(x, T*y)
=X aT*y)=(x(aT9y)

S @T)*= aT*

3) X, (T1 T2)*y) = ((T1 T2) X, y)



SIGNED MEASURE

= (T«(T2x),y)
= (T2, T1*y)
= (X, T2*(T1*y))

=X, (T2*T1*)y)

Thus by the uniqueness of adjoint operator.

(Te T)* =Ty* T1*

(4) X, T**y) = (x, (T*)*y)

=(T*x,Y)

= (yl T*X) :(Ty! X)

=(x, Ty)

>T**=T

(5) Let y be an arbitrary vector in H. Then
[Ty P =(T*y, T*Y)
=TTy, y)
<ITT*y iyl

<ITHIT*y iyl

=Tyl <ITIyl

= [T <]l

Replacing T be T* in the above inequality, we have
> < 1T

= [ITI=lIT]

185
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Hence ITH=1T*]

(6) To prove this equality, we have
ITTH<IT=INTH=ATINTI [using (5)]
= TIP
and
I TX|P=(Tx Tx)=(X T*Tx)
<A T T x|l
<A T Al

=X IFIT* T

ITxIF -
D{IIXIF ,X¢O}_||T T

:>sup{”TX”2 ,x;eo} < T*T|

[Ix|F
SITIE<)IT T )
from (1) and (2)
IT=T =TI

Self — Adjoint Operator

Now we study some special types of operators defined on a Hilbert space. The
definitions and properties of these operators depend mostly on the properties of
the adjoint of an operator.

Definition: An operator A on a Hilbert space is said to be self — adjoint if it
equals its adjoint i.e. if A = A*.
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We know that 0* = 0 and I* = I, so zero and | are self adjoint operator. If o is
real and A; and A; are self — adjoint, we claim that A; + A, and o A; are also
self — adjoint. We establish these facts in the form of a more general theorem:

Theorem 9 : The self adjoint operators in 3(H) form a closed real linear
subspace of B(H) and therefore a real Banach space — which contains the
identity transformation.
Proof: If A; and A; are self — adjoint and if o and 3 are real numbers, then
(0 Ar+ B A)* = (a0 A)* + (B A2)*

= & A*+ [_3 Ay*

=a A+ B Ao.
[ Since o, B are real and A1* = Ay, Ay* = A;.

= o A; + B A, is also self — adjoint. Therefore set of all self — adjoint
operators A in B(H) is its linear subspace.

Further, if < A, > is a sequence of self — adjoint operators which converges to
an operator A, then it can be seen that A is also self — adjoint. In fact

[A—A*[[= | A=A+ Ag— Ag* + A* - A% |
<A=An [+ An =A™ ||+ | A = A*|
=[[A=An |l +] (An—A)* |
=[[A=An|l+] A=Al [using | A* || = Al
=2||Ar—A| 0.

=>A-A*=0s0 A=A*
Also I* = 1.
Hence the set of all self — adjoint operators in (H) form a closed linear
subspace of B(H) containing identity transformation and therefore is a real
Banach space containing the identity transformation.

Theorem 10 : If A; and A; are self — adjoint operators on H, then their product
A; Ay is self —adjoint iff A; Ay = Az As.

Proof: Suppose first that A; A, is self — adjoint, then

ArAz= (AL A)* = A" Ar* = Ay Ay
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Conversely suppose that A; A, = Az Az. Then
(A1 Az)* = Az* Al* = Az Al = A1 A2
and therefore A; A; is self — adjoint.

Theorem 11 : If T is an arbitrary operator on H, then T =0 < (T x, y) = 0 for
all x and y.

Proof: If T =0, then (T X, y) = (0 x,y) = (0, y) =0 for all x, y € H. On the
other hand if (T x, y) = 0 for all x and y in H, then in particular (T x, T x) =0
for all x € H which means that T x =0 for all x € H and therefore T = 0.

Theorem 12 : If T is an operator on H, then T = 0 iff (T x, x) = 0 for all x.
Proof: If T =0, then
(Tx,x)=(0x,x)=(0,x)=0V x € H.

Conversely suppose that (T x, x) = 0 for all x € H. We shall show that T =0
which holds if (T x, y) = 0 for all x, y € H. So it suffices to prove that (T X, y)
=0 forall x, y € H. The proof of this depends on the following identity.

(Tax+By);ax+By) —laf (Tx,x)-[BF(Ty,y)

=a B(Tx y)+ aB(Ty, x) 1)

By our hypothesis, the left side of (1) and therefore the right side as well equals
zero forall ccand B. Ifwe putae =1, B =1in (1), we get

(Tx,y)+(Ty,x)=0 )
and if we puta =iand 3 = 1, we get

i(Tx,y)- i(Ty,x)=0
and therefore

(Tx,y)-(Ty,x)=0 ®)
Adding (2) and (3), we have

(Tx,y)=0 forallx,y e H.

Hence T =0.
Theorem 13 : An operator T on H is self adjoint iff (T x, x) is real for all x.

Proof: If T is self adjoint, then

(Tx,x) = (X, TX)=(x, T*x) =(T X, X)
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shows that (T x, x) is real for all x, On the hand, if (T x, x) is real for all x, then

(Tx,x)= (Tx,x) = (X, T*x) =(T*X, X)
>(T-T*)x,x)=0
>T-T*=0=>T=T*

Definition: If A; and A; are self — adjoint operators on a Hilbert space H, we
write A; < Ay if (A1 X, X) = (Az X, X) forall x € H.

Theorem 14 : The real Banach space of all self — adjoint operators on H is a
partially ordered set whose linear structure and order structure are related by
following properties :

(1) If AL < Ay then A + A <A, + Aforevery A.
(2) If A; <Ay then o >0, then oo A; < o Ao,

Proof: Suppose B is the Banach space consisting of all self — adjoint operators
on H. We define relation < on B by

AlﬁAzif(Alx,X)S(AQX,X) vV X e H, A, A, € B,
Then
M AX,X)=(AXx,X) VXxecH AcBimplies A<AY A c B. Hence < is

reflexive.
(i) If Az, A, € B such that A; < Ay and A; < Aq, then
Al<A > (Al X, X) < (A2 X, X)

A, <A = (A2 X, X) < (A1 X, X)

Combining these two expressions, we have
(A1 X, X) = (A2 X, X)
= (A1 —A)X, X) =0 =>A;1 -A2=0
= A1 = A,

Therefore the relation < is anti — symmetric.
(iii) Let Az, Az, Az € B such that A; < Az and A, < As. Then

AL <A = (A X, X) < (A2 X, X)
A <Az = (A2 X, X) < (Az X, X)
On both of these yield
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(A1 X, X) < (Az X, X)
= A; <As.

Thus the relation is transitive.
Hence < is a partially ordered relation. Now we prove the relation (1) and (2)

Q) AL<A = (A1 X X) < (A2 X, X)
= (A1 X, X) + (A X, X) <(A2X,X) + (AX,X)
= ((Ar+A) X, X) <((A2+ A) X, X)
>AI+tA<A+A

(2) A1 <A = (A1 X, X) < (A2 X, X)
= o (A1 X, X) <o (A2 X, X)
= (a0 A1 X, X) < (a0 Az X, X)
= ((a A1) X, X) < ((o0 A2)X, X)
> aA<aAy Vax0.

Hence theorem.
Positive Operator

Definition: A self — adjoint operator A is said to be positive if A> 0, i.e. (A X,
X) > 0 for all x.

It is clear that 0 and | are positive, as are T* T and T T* for an arbitrary
operator T.

Theorem 15 : If A is a positive operator on H, then | + A is non — singular. In
particular I + T* T and | + T T* are non — singular for an arbitrary operator T
on H.

Proof: We must show that I + A is one to one onto as a mapping of H into
itself. First of all we observe that

(I+A)(X)=>x+Ax=0

=>AX=-Xx=(AX X)=(x,x)>0.

=-|x[F20=>x=0Vx e H.
Then

(I+A) ) =(+Ay=(1+A)Kx-y)=0.



SIGNED MEASURE

=>X-y=0=>x=y

= | + A'is one — to — one.

It remains to show that | + A is onto. It is sufficient to prove that range of |1 + A
equals H. Let M be the range of | + A.
Then
[ (+A)x|P=|Ix+Ax|?=(X+AX X+AX)
=(X,X)+ (X, AX)+(AXx,X)+(AXx,AX)
= xIP+2(A %, x) + | Ax |
[Since (A X, X) is real]
> x|f
> IxIP<I1(+A) x|

By this inequality and the completeness of H, M is complete and therefore
closed. Suppose that M c H. Then 3 a non — zero vector Xo 1. M such that

(Xo, (I +A) X0) =0
= (Xo, Xo) *+ (X0, AX0) =0
= || xo [P+ (AXo,X0) =0
= || %o | == (A X0, Xo) <0
= X =0.
which contradicts the fact that xq is a non — zero vector.
Hence M = H. It follows therefore that | + A is one — to — one and onto and

hence non — singular.

Normal Operator

Definition: An operator N on a Hilbert space H is said to be normal if it
commutes with its adjoint that is N N* = N* N.
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Theorem 16 : The set of all normal operators on H is a closed subset of R(H)
which contains the set of all self — adjoint operator and is closed under scalar
multiplication.

Proof: If N is a self — adjoint operator, then
N*=N = N N* = N* N.

Thus it follows that every self — adjoint operator is normal. Therefore the set M
contains the set of all self — adjoint operators.

Let o be a scalar and N a normal operator, then
(o N) (o N)* = (@ N) ( o N*) = o a(N N*)
= a.a (N*N)
=( o N*) (a N)
= (aN)* (aN)

Now consider the set M of all normal operators on H. It is clearly a subset of
B(H). To show that it is closed, it is sufficient to prove that every Cauchy
sequence {Nx} of normal operators on H converges to a normal operator. Due

to the completeness of B(H) this sequence converges to some operator N we
shall show that N is normal. Since N* — N*, we have

I[N N = N* N[ = [ NN® = Ni Nic® + Nic Ni®t — Nt Ny + Nt N — N* N |
< ||NN* — Nka*” + ||Nka* — Nk*Nk” + ||Nk*Nk—N*N||

= [INN* — NiN*[| + [IN*N, — N*[| — 0
< |INN* = Nie N* [+ [ Ni* Nic || = N* N | > 0
which implies that
NN*-N*N=0
= NN*=N*N
therefore N is normal.
Theorem 17 : If N1 and N, are normal operators on a Hilbert space H with the

property that either commutes with the adjoint of the other, then N; + N, and
N1 N, are normal.
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Proof: We are given that
N1 N1 = N1* Nz, N2 N2* = No* N,
N1 N2* = No* Nj, N2 Ni* = Ny * N,
We show first that N; + N3 is normal. For this, we have.
(N1 + N2) (N1 + N2)* = (N1 + N2) (N1* + N2*)
=Nz N1* + N7z No* + N No* + No Np*
= N1* N + N2* N7 + N1* N2 + No* Ny
= (No* + N2*) (N1 + N2)
= (N1 + N2)* (N1 + Ny)
which shows that N1 + N is normal.
Similarly
(N1 N2) (N2 N2)* = (N1 Nz) (N2* N*y)
=Ny (N2 N2*) Np*
= Nyg (N2* N2) Np*
= (N1 N2*) (N2 N1*)
= (N2* N1) (N1* N2)
= N2* (N1 N1*) N2
= (N2*(N1* N1) N2
= (N2* N1*) (N1 N2)
= (N1 N2)* (N1 No)
= N; N3 is normal.
Theorem 18 : An operator on a Hilbert space H is normal if and only if
|| T*x || =] T x|| for every x.

Proof: T is normal iff
TT*=T*"T<oTT*-T*T=0
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S>(TT*-T*T)x,x)=0 VxeH

[since an operator T on H is zero iff (T x, x) = 0]
S(TT*XX)=(T*T X, X)

S (T*X, T*X) = (T x, TX)

S| T*x|P={ITx]|?

S [ITx [ =Tx]

Theorem 19 : If N is a normal operator on H, then
I N? || = || N ||? [by the above theorem]

Proof: Since N is normal, we have
IN*X[|=[INXx|| VxeH *)

= IN* [l =sup {IN*x[|; || x || < 1}
=sup {IIN(NX) [} I x || < 1}
=sup {IIN*(Nx) [[; [[ x| <1}
=sup {IIN*NXl; |l x [| < 1}
[By the property of adjoint operation on 3(H)]
Remark: For an arbitrary operator T on a Hilbert space, we form

T+T* T-T*
A= ) Ay = .
2 2

It can be shown that A; and A; are self adjoint and they have the property that
T=A1+i A,

In fact Ar* = %(T +T*)* = %(T* +T)

CTAT*
2

= A; = Ay is self — adjoint

1
and A,* = i (T-T)]*=-——=(T*-T)
2i 2
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2—(T—T*) =A;
= Ay is self — adjoint.
T+T* T-T*
+ =
2 2
Also T* = (Al +i Az)* = A -1 A*

:Al*—iAz*:Al—iAz.

1
i

Ar+iA= T

A; and A; are called real and imaginary parts of T.

Theorem 20 : If T is an operator on H, then T is normal < its real and
imaginary parts commute.

Proof: If A; and A, are real and imaginary parts of T so that T = A; +i A, and
T*=A; - i Ao, then

TT*= (AL +iA) (A —i A) = AP+ AL +i(As AL — AL AY)
and T*T=(A1—iA) (AL +i A) =A%+ AL +i (AL Ar— Ay Ay)
Itis clear that if Ay A, = Ay Ay
Then TT*=T*T
Conversely Tisnormal iff TT*=T*T

SALA-A A=A A -ALA;
S2AA=2A A
SAA=AA.

Unitary Operator

Definition: An operator w on H is said to be unitary if U U* = U* U = |

Theorem 21 : If T is an operator on H, then the following conditions are all
equivalent to one another.

OHTT=1I
(2)(Tx, Ty)=(x,y) forall xand y
G) T II'= [ x [| for all x.
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Proof: (1) = (2),
If T* T =1, then

(T, Ty)=xT*Ty)=(x1y)=(x,y)
forall xand y

(2) = (3). If (T x, Ty) =(x,y) for all x and y, then taking y = x, we have
(Tx Tx) = (xx) =[x

=176 1P =11 x I

=T =M% vx

(3) = (1) when || T(x) [ = [ x
= (I TE) [P =11 x|
= (Tx, TX) = (X X)
= (T*Tx, %) = (1, X)
S(T*T-)x,x)=0  VYxeM
ST*T-1=0=>T*T=1.

Theorem 22 : An operator T on H is unitary iff it is an isometric isomorphism
of H onto itself.

Proof: If T is unitary, then we know from the definition that it is onto.
Moreover since T* T = I, by the previous Theorem.

ITO) =111 VxeH.
Hence T is an isometric isomorphism of H onto itself.

Conversely if T is an isometric isomorphism of H onto itself, then T is a one —
one mapping onto H such that

| T(X)||=|| x| ¥ x € Hand so by the above theorem, T* T =1
Since T is an isometric isomorphism of H onto itself, T™ exists and then

T*T=1=T*=T7 Also we note that
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TT*=TT =1

= T*T=TT*=1=Tisunitary.

Projections

We know that a projection on a Banach space B is an idempotent operator on B
i.e. an operator P with the property P? = P. It was proved that each projection P.
determines a pair of closed linear subspaces M and N, the range and null space
of P such that B = M @ N and also conversely that each such pair of closed
linear subspaces M and N determines a projection P with range M and null
space N.

The structure which a Hilbert space H enjoy in addition to being a Banach
space enables to single out for special attentions those projections whose range
and null space are orthogonal.

We establish the following theorem:

Theorem 23 : If P is a projection on H with range M and null space N, then M
1 N, < P is self — adjoint and in this case N = M.

Proof: Since P is projection on a Hilbert space H with range M and null space
N, we have H=M @ N, so each vector z € H can be written uniquely in the
formz=x+y,xe M,y € N.

If M L N, then (X, y) = (y, X) = 0. Therefore for all z in H, we have
(P*z,2)=(z,P2)=(z,X) = (Xt Y, X)
= (X x) + (v, ) = (%, X).
and
(Pz,2)=(x,2) = (X, x +y) = (X, X) + (X, y)
= (X, %)

= ((P*z,2)=(Pz 2)
=|[(P*-P)z,2]=0

—P*- P=0=P*=P,

Conversely suppose that P* = P, to prove that M L N, it is sufficient to show
that if x and y are arbitrary elements of M and N respectively, then (x, y) = 0.
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In fact we have,

X y)=(Px,y) = P*y)=(x,Py)
=(x,0)=0. {Nisthenull spacey € N, P(y) =0}

Hence M L N.

It remains to prove that if M L N. Then N = M™. It is clear that N = M* and if
N is a proper subset of M* and therefore a proper closed linear subspace of the
Hilbert space M, there exists a non — zero vector z in M* such that zo L N.
Since zo L. Mand zo L. Nand H=M @ N. It follows that zo L H. This is
impossible and hence N = M™.

Definition: A projection on H whose range and null space are orthogonal is
called a prependicular projection.

The only projections considered in the theory of Hilbert spaces are those which
are perpendicular.

In the light of above theory an operator P on a Hilbert space H is a
perpendicular projection if P2 = P and P* = P.

Moreover P is projection on M only if (I — P) is a projection on M~

Theorem 24 : If P and Q are the projections on closed linear subspaces M and
Nof H.
ThenM IN<PQ=0<QP=0.

Proof: If M L N, then N = M™. Since Q is a projection on N, Qz is in N for
each z € H.

Therefore Qz e M* = P(Qz) =0
=>PQ(z)=0=>PQ=0.
Moreover taking adjoint, we have
PQ=0=>{PQ)*=0*

=>Q*P*=0=QP=0.
Hence MIN=PQ=0=QP=0.
Conversely suppose that Q P =0

=P Q=0, thenforx e Mory e N, we have
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X y)=FPx,Qy)=(P*Qy)

=(x,PQyY) =(x,0.y)=(x,0)=0.

Hence M 1 N.
Therefore QP=0=>PQ=0=>M L N.

Definition: Two projections P and Q are orthogonal if P Q = 0.

Theorem 25 : If Py, Po,......... , P, are the projections on closed linear
subspaces M;, Mo.......... M, of H, then P = P, + P, + ......... + Py is a
projection < P; ‘s are pairwise orthogonal (in the sense that P; P; = 0
whenever i = J) and in this case, P is the projectionon M =M; + M, + .........
+ M.

Proof: Each P; is a perpendicular projection therefore Pi* = P; = P fori = 1, 2,

=Py+Py+o +Pn=P.
Hence P is self — adjoint. Now P is a projection < it is idempotent.
If P;’s are pairwise orthogonal, then

P; Pj =0 fori ij
Hence

= P is idempotent.
Thus we have proved that if P;’s are pairwise orthogonal, then P is a projection.
To prove the converse we assume that P is idempotent. Let x be a vector in the
range of P; so that Pi(x) = x.
Then

1% |2 = | Pi(x) ”Zﬁjné P X = Jz Py, Pi(x) = Jz (Pi X, Pi* X)
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n 2

= Zl (Pi" %, x)
J:

(Pi X, %)

1
™>

—
Il
=

=[(P1+Py+........ +Pp) X, X]
= (P x, X) = (P? X, X)
= (P x, P*x)
=(Px,Px)=|Px[*<| x|
Since I XIP=1IPx+(1-P)x]|?
=IPx |? + || (1 = P) x |[* [Pythagorean theorem]

= [[PC) P <l x I

2 _J _ 2 2 2_ 3 _ 2
Hence | x| < Zl I P 1" < [[ X [IF = [[ X [I* = Zl I PG I
j= i=

n -
Z lIPyx F=1PC)IE=1xI®  [Since || Pi(x) IIP =l x II']
J:

which implies that || Pj(x) || = 0 for j = 1.

Now Pj(x) = 0 = x e Null space of P; for j  i. Thus range of P; is contained in
the null space of P; i.e. M; c M;" for every i = j and this means that M; 1 M;
for i = j. Hence [by the preceding theorem] P;’s are pairwise orthogonal.

We now show that P is a projection on M. Firstly we observe that since || P(X) ||
= || x || ¥ x € M, each M is contained in the range of P and therefore M

m
:Z Mi; is also contained in the range of P.
i=1

Secondly if x is a vector in the range of P, then
X:PX:(P1+P2+ .......... +Pn)X.

=Pix+Pax+...... + Pp X.
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is evidently in M = Z M; since P; x € M;.
i=1
Hence the theorem.

Definition: A closed linear subspace M of a Hilbert space H is said to be
invariant under an operator T on H if T(M) < M.

If both M and M™ are invariant under T, then we say that M reduces T (or that
T is reduced by M)

Theorem 26 : A closed linear subspace M of H is invariant under an operator
T < M*is invariant under T*.

Proof: Suppose first that M is invariant under an operator T, then T(x) € M for
all x € M. We shall show that M* is invariant under T*. If y is any vector of
M,

Then (x,y)=0forall x € M.
(X, T*y)= (Tx,y)=0since T x € M.

—>T*yeM* forallyy e M*

Hence M is invariant under T*.

Conversely suppose that M™ is invariant under T*. Then M is invariant under
(T*)* =T** ButM—"=Mand T** =T,

Therefore it follows that M is invariant under T.

Theorem 27 : A closed linear subspace M of H reduces an operator T << M is
invariant under both T and T*.

Proof: By definition we know that M reduces T
< M is invariant under T and M* is invariant under T

< M is invariant under T and M is invariant under T* [By previous
Theorem].

< M is invariant under both T and T*.

Theorem 28 : If P is a projection on a closed linear subspace M of H, then M
is invariant under an operator T<> TP=PTP
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Proof: If M is invariant under T and X is an arbitrary vector in H, then
XxeH=PX) e M=T(P(X))cM

=STP(X)eM
= P(TP (X)) = T P(x)
= (PTP)(x)=TP(x)
—PTP=TP.

conversely if TP =P T P and x is a vector in M then P(x) = x
= T(P(x)) = T(x)
= P T(P(x)) = T(x)

But P T P (x) € M, therefore T(x) € M.

Hence M is invariant under T.

Theorem 29 : If P is the projection on a closed linear subspaces M of H, then
M reduces an operator T< TP =P T.

Proof: By a result proved above, M reduces T iff M is invariant under T and
T*Iff TP=PTPand T*P=PT*P
< TP=PTPand (T*P)* = (P T* P)*
< TP=PTPand
P*T**=P*T*P*<TP=PTP
AndPT=PTP[-"P*=Pand T**=T]
<TP=PT.

Reflexivity of Hilbert space

Let H be a Hilbert space with inner product denoted by (y, x). The dual
(conjugate space) H* is then a Hilbert space with inner product given by (x*,
y*) = (y, x) for each x* and y* in H* where x — x* and y — y* under the
mapping H — H*.
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We now establish the following result concerning the reflexivity of a Hilbert
space.

Theorem 30 : Every Hilbert space is reflexive.

Proof: Let H* denote the dual space of a Hilbert space H. Consider the
mapping T defined by

T:H—->H*
y->Ty=f D
where the bounded linear functional f is, for any x € X, given by
(Ty) () =f(x) = (x,y) )
Suppose now that under T,
y1—fi
and Y2 —> T

and lety; +y, — g.
Thus

g(x) = (X, y1 +y2)
=0 y) + (X ¥2)
= f1(X) + f2(X)

and we conclude that

T(yr +Yy2) =T(y1) + T(y2)

Showing that T is additive. Now suppose under T,y — f
And for a scalar o, let T(ay) = h, then

h(x)=(x, ay)= a(xy)= ofx),

T(oy)= o T(y)

therefore

Showing that T is conjugate linear. Also, by Riesz — Representation theorem
for bounded linear functionals on a Hilbert space, to each bounded linear
function f, there exists a unique y € H such that for every x € H, f(x) = (X, y)
and || f|| =y Inview of this the mapping T is onto and further

IF=1Tyll=lyll(y>Ty=1
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Therefore T is norm — preserving mapping or isometry. As we know that an
isometry is always a 1 — 1 mapping.

Thus we have, the mapping T constitutes a 1 — 1 onto isometric, conjugate
linear mapping from a Hilbert space onto conjugate space. Thus we see that
Hilbert space and their conjugate spaces are indistinguishable metrically and
almost indistinguishable algebraically. [ Almost because T is conjugate linear]

Let x* be a bounded linear functional on H and x € H. Denote
x*(X) = [x, x*]. Consider the mapping

J:H > H**
X —> X**

where for defining equation for Jx we have for any x* € H*
X*F*(x*) = [x*, x**] = [x*, X] = [X, X*] = x*(X)

3

we now show that x** is a bounded linear functional. Let x* € X*, then
| X**(x*) [ = [ x*(x) | < [ x* [ [ x|l
=[x I <|Ix | *)

Further if x = 0, then
0<|Ix**|<0.

And consequently || x** || = || x||=0

If X is a non zero vector, then there must be some bounded linear functional xo*

with norm 1 s. That Xg*(x) = || X ||. But
S su

up | p |
IX*[=1 IxX*[=1
2| x* () [ =1l (%)

x>l = XF*(x*) | = X*(x) |

Thus || x**[| = x|

= J is an isometry. Since isometry is always a 1-1 mapping, it follows that J is
an isomorphism. It remains to show that J is onto. To this end, let f be an
element of H**. We must find z € H such that Jz = f. For T defined in (1)
consider the functional g defined by

g:H->f
x — f(T(x)

For x1, X, € H, consider
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g(x1+x2) = F(T (% +X;)

f(Tx, +Tx,)

FT(Q) + F(T(x)

g(X1) +9(x2) (4)

— g Is additive.

Now let x € H, a € F, then
glax)= f(Tax) = f(aT(X))
= af(T(x) =a. g(x)

Hence g is linear.
Further since T is an isometry, we have

190 [ = FTON [= T x) [<IIFIIT x|

=IElHExl

Thus g is bounded.
By Riesz — Representation Theorem, 3 z € H such that for all x € H,

9(x) = (x, 2)
Or f(Tx) =(x, 2)

= (T x) =(z, X) 5)

On the other hand by the definition of J and T (using(2) and (3)
(@2)(TMx)=z**(Tx)=Tx(2) =(z,X) (6)

Thus (5) and (6) yield that Jz and f agree on every member of H*. Hence they
are same. This completes the proof.

Example: Show that a Hilbert space is finite dimensional <> every complete
orthonormal set is a basis.
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Solution: Let H be a finite dimensional Hilbert space of dimensional n. Let S =
< e; > be a complete orthonormal set in H. Then we have to show that S is a
basis for H. Since S is an orthonormal set, therefore it is linearly independent.

Also S must be a finite set because it can not contain more than n vectors. [

Since H is finite dimensional]. Now let x € H. Since S is a complete

orthonormal set, therefore we have x = Z (X, &) . Thus each vector x in H
e eS

can be written as linear combination of vectors in the set S and so S generates

H. Therefore S is a basis for H. [ Thus in a finite dimensional Hilbert space of

dimension n every complete orthonormal set must contain exactly n vectors].

Conversely suppose that every complete orthonormal set in a Hilbert space H
is a basis for H. Then to show that H is finite dimensional. Let S be a complete
orthonormal set in H. Then by hypothesis S is a basis for H. We are to show
that S is infinite set. Suppose & is infinite. Then we can certainly extract a
denumerable sequence of distinct points of S

Consider now the series

— €n.
i

Since the series Zn—lll is convergent, = the series Z% ey is convergent [ by
n=1 n=1

the result that. Let H be a Hilbert space and let S = < ey, e,,...... ,en,.....> be

countably infinite orthonormal set in H. Then a series of the form Z O €y 1S
n=1

convergent iff > | [* < oo,
n=1

e 1 : . :
Thus the series E — €n must converge to some vector x in H. Since S is a
=N
n=1

basis for H, therefore we can write X as some finite linear combination of
vectors in S. Let

X = Oy, e}\l + .. + (x“, e“,
where €;,.....e, € Sand oy, .......... , o, are scalars. Let j be any +ve integer
having value different from the values of indices A,......... , L. We have

(X, e,-) = (OL}L e t...... +oy ey, ej)
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=ou(en &) T .cuennnnn (e €) =0.

Also (X, &) = (Z—nz en, &) [ X= Z nZ en]
n=1 n=1

1
n?

Thus we have niz = 0 which is not possible. Therefore the set S must be finite

and H is finite dimensional.

Theorem 31 : Prove that any two complete orthonormal sets in a Hilbert space
H have the same cardinal number.

Proof: Let S; and S, be two complete orthonormal sets in a Hilbert space H.
Suppose one of these sets is finite. Let S; be finite and S; = {ey, €y, ......... , €n}-
Since S; is an orthonormal set, therefore it is linearly independent. Also since
S; is complete, therefore if x € H, then we have

X = (%, &) &

n
i=1

Thus S; generates H. Therefore S; is a basis for H and so H is finite
dimensional and dim H = n. Since S; is also a complete orthonormal set in H,
therefore S, must also be a basis for H. Since S; and S; are both bases for H,
therefore they must have the same number of elements.

Now let us suppose that both S; and S; are infinite sets. Let x € S; and let Sy(x)
={y:ye S;and (y, X) = 0}. Then S,(x) is a subset of S, and thus S,(x) is
a countable set \. Let z be any arbitrary member of S,. Since S; is a complete
orthonormal set and therefore by Parseval’s identity, we have

IzIP=3 1@ [

XeS;

Butz € S, = z is a unit vector.
Therefore we have

1= @l

XeS;

From this relation we see that there must exist some vector X € S; such that (z,
x) = 0. Then by our definition of S;(x), we have z € Sy(x). Thusz € S; = z €
S2(Xx) for some x € S;. Therefore we have
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S2= U Sx) 1)
Xe$y

Let n;, n, be the cardinal numbers of S;, S, respectively. Since the cardinal
number of the union of an arbitrary collection of sets can not exceed the
cardinal number of index set, therefore n, < n;. Interchanging the roles of S;
and S, we get ny < n,.

Therefore we have ny = ny

Remark: Let S be a complete orthonormal set in a Hilbert space H. Then the
cardinal number of S is said to be the orthogonal dimension of H. If H has no
complete orthonormal set i.e. if H is the zero space, then the orthogonal
dimensional of H is said to be zero.

Definition: Operators S and T are said to be metrically equivalent if || S x || = ||
Tx||VxeH.

Theorem 32 : Operators S and T are metrically equivalent if S* S=T* T

Proof: Let S and T be metrically equivalent
ISx|I=]Tx]| Vv x € H.

S (S*. S, X) = (SX, SX)=[ISx|P =T x|’
=(Tx, TX)=(T*T X, X)
= ((§*S-T*T)x,x)=0
=S*S-T*T=0
=>S*S=T*T.
Theorem 33 : An operator T is normal iff T and T* are metrically equivalent.

Proof: Suppose Tisnormal > T*T=TT*
and so by the above theorem, T* and T are metrically equivalent.
Conversely suppose that T and T* are metrically equivalent

= Tex|[=[Tx]

ST*T=TT*

= T is normal.
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Finite Dimensional Spectral Theory
First we give basic definitions and results.

Definition 1: Let T be an operator on a Hilbert space H. A vector x € H is said
to be a proper vector (eigen-vector , latent vector or characteristic vector) for
the operator T if (i) x = 0 and (ii) Tx = ux for a suitable scalar u. if also Tx = vx
, then Tx = ux and Tx = vx implies (u—v) x = 0. Since x = 0, it follows that u
=v. Thus a proper vector x determines uniquely the associated scalar u.

Definition 2: A scalar u is said to be a proper value (Eigen value , latent root
or characteristic root(value)) for the operator T in case there exists a non-zero
vector x such that Tx = ux.

Thus u is a proper value for T if and only if the null space of T-ul is not equal
to [0].

Remark : If the Hilbert space H has no non-zero vector at all , then T certainly
has no eigen vectors. In this case the whole theory collapses into triviality. So
we assume throughout this lesson that H = [0].

Theorem 1: If T is a normal operator , x is a vector and u is a scalar , then Tx
= ux if and only if T*x = u x. In particular

(1) x is a proper vector for T if and only if it is a proper vector for T*.
(2) u is a proper value of T if and only if it u is a proper value of T*.

Proof : By virtue of normality , T*T = TT*.

Since
(T-ul*=T*— ul*=T*-ul.
we have
(T-ul*(T—ul)y=(T*=ul) (T—ul)
=T*T—uT*-uT+uul
and

(T-ul)(T—=u)*=(T-ul)(T*=ul)
=TT*- uT-uT*+u ul
Since TT* =T*T , it follows that T - u | is normal. Hence

I (T=u)x{ =] (T-ul*x]
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which in turn implies that Tx = u x if and only if T*x = u x. This proves (1)
and (2).

Remark : Let H be a classical Hilbert space and X; , Xz , ..... an orthonormal
basis for H. Then one sided shift operator T defined by Txx = Xk+1 has no
proper value.

Theorem 2: Let T be a normal operator on a Hilbert space H. Then there exists
on orthonormal basis for H consisting of eigen vectors of T.

Proof : Let A be an eigen value of T and suppose X is corresponding eigen
vector. Thus we have Tx = Ax. Since x can not be zero , we can choose

Xy = X , If the dimension of H is 1 , then we are done. If not , we will

Il
proceed by induction. We shall assume that the theorem is true for all spaces of
dimension less than H and then show that it follows for x from this assumption.
Letting m = [x1] = [a0 X1 , a € F]. The space spanned by x; , we have the
following direct sum composition of H :

H=M®® M.

We must have then dim M+ < dim H. Since x; is an eigen vector of T , we have
Tx; = A X; and therefore it is clear that M is invariant under T. But we know by
theorem 1 that eigen vectors of T must also be eigen vectors for T*. Therefore
M is invariant under T* also. Hence M is invariant under T** = T. Thus we
have

(i) M is invariant under T.
(ii) M* is invariant under T.
Thus we can say that M reduces T.

Consider now the restriction of T to M* denoted by T/M* where T/M* : M+ —
M-*. Since T is normal , T/M™* is also normal since M* reduces T. Now since
dim M* < dim H , we can apply the induction hypothesis to assert the existence
of an orthonormal basis for M+ consisting of eigen vector for T/M* ; {x; , X2 ,

.., Xn}. Eigen vectors of T/M* however must also the eigen vector of T.
Hence for the entire space , we have (X1, X2, ....., Xn) as orthonormal basis of
eigen vectors of T. Hence the result.

Spectral Theorem for Finite Dimensional spaces

Definition : The set of eigen values of an operator T is called its spectrum or
point spectrum and is denoted by (T).
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Statement of Spectral Theorem

Let A1, A2 ,...., An be the eigen values of an operator T and let My, M, , .....,
M, be their corresponding eigen spaces. If P, , P, ,....., P, are the projections
on these eigen spaces , then the following three statements are equivalent to
one another.

(1) My's are pairwise orthogonal and span H.

(2) Pi's are pairwise orthogonal , that is P; P;j=0fori=jand I =P; + P,
oo + P, and also

T=MP1+2P+ ... + An Pn
(3) T is normal.

Proof : (1) = (2), BY (1) every vector x in H can be expressed uniquely in the
form

X=X1+Xo+....... + Xn , (4)

where X; € M; for each i and x;’s are pairwise orthogonal. Further (1) if M; L
M;, i #j then M; c M. Then since Pjx = M; for every x , we have P; P;x =0
for any x and P; Pj = 0 for i # j. This proves that P;’s are pairwise orthogonal.
Applying P; to both sides of (4) , we have

Pix=Pixg +PijXxo+........ + Pi X,
=0+0+....... +PiXit...... +0
=X forany i.

Hence we can write any x as

X=P1X+Pyx+....... + Py X
or IX=P;X+Pyx+...... + Pp X for identity operator T.
or IxX=(P1+P2+...... + Pp X) X

Since this is true for any x € H, we conclude that
=Py +Py+....... +P,.

Further applying T to x in (4) , we have
TX=Txs+Txp+........ + T x,

S X1 F Ao Xo+ Ll + An Xn
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=MPiX+APox+ ... + An Pn X
=(M P+ A Po+....... + An Pn) X
for every x and so
T=AMPi+APot ... + A Pa ®)

The representation (5) for an operator T , when it exists is called the Spectral
Representation or Spectral form of T.

(2) = (3), it follows from
T=M P+ Py+....... + An Pn
That
T*= APy + M Po*+ ... + An Pp*

:7\,1P1+7\,2P2+ ........ +7\1npn

+ An Pn)
=M PP+ . + | An [? P2
=M PP+ A PPt oo + | n 2Py
and similarly
T*T =M PP+ | A PPot ... + | & > P
and therefore
TT*=T*T.

Proving that T is normal.
(3) = (1) Suppose that T is normal.

We shall prove first that M; L M; for i = . Given x; € M, Xj € M, it is
sufficient to show that Xi L xj. Since xj € Mj, Xj € M;, we have Tx; = A X;
, TXj =4 Xj . Since T is normal Tx; = A X; = T*X; = A;j Xj and so

(T Xi, Xj) = (Xi , T Xj)
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or (i i, X)) = (i, 4 %)
or Ai (X, X)) = A5 (Xi, X))
or (Ki - Kj) (Xi ) Xj) =0

Since A; = A; , it follows that (X; , Xj) = 0 and hence X; L x;. This proves that M;
1 M; fori = jand so My’s are pairwise orthogonal. It remains to prove that T is
normal , then M;’s span H that is H=M; + My + ...... + Mp. We have just
shown that M;’s are pairwise orthogonal. This implies that Pi’s are pairwise
orthogonal. Therefore M =M; + My + ........ + M, is a closed linear subspace
of H and its associated projectionisP =Py + Po+ ......... + P,. Also we know
that if T is normal , then M; reduces T. Therefore T P; = P; T for each P; , it
follows from this that T P = P T and hence M reduces T and so by definition M
is invariant under T. If M = (0) , then since all the eigen vectors of T are
contained in M, the restriction of T to M is an operator (normal) on a non —
trivial finite dimensional Hilbert space which has no eigen vectors and hence
no eigen values. But this is a contradiction to the fact that there exists an
orthonormal basis for H consisting of eigen vectors of normal operator T.
Hence M = (0) and so M = H and hence H = M; + M, + ...... + M, which
shows that M;'s span H. Hence the result.



